959 resultados para Zeros of orthogonal polynomials
Resumo:
The results of shore-based three-axis resistivity and X-ray computed tomography (CT) measurements on cube-shaped samples recovered during Leg 185 are presented along with moisture and density, P-wave velocity, resistivity, and X-ray CT measurements on whole-round samples of representative lithologies from Site 1149. These measurements augment the standard suite of physical properties obtained during Leg 185 from the cube samples and samples obtained adjacent to the cut cubes. Both shipboard and shore-based measurements of physical properties provide information that assists in characterizing lithologic units, correlating cored material with downhole logging data, understanding the nature of consolidation, and interpreting seismic reflection profiles.
(Figure F2) Orthogonal vector plots of AF demagnetization steps of IODP Hole 308-U1319A (16.26 mbsf)
Linear global instability of non-orthogonal incompressible swept attachment-line boundary layer flow
Resumo:
Instability of the orthogonal swept attachment line boundary layer has received attention by local1, 2 and global3–5 analysis methods over several decades, owing to the significance of this model to transition to turbulence on the surface of swept wings. However, substantially less attention has been paid to the problem of laminar flow instability in the non-orthogonal swept attachment-line boundary layer; only a local analysis framework has been employed to-date.6 The present contribution addresses this issue from a linear global (BiGlobal) instability analysis point of view in the incompressible regime. Direct numerical simulations have also been performed in order to verify the analysis results and unravel the limits of validity of the Dorrepaal basic flow7 model analyzed. Cross-validated results document the effect of the angle _ on the critical conditions identified by Hall et al.1 and show linear destabilization of the flow with decreasing AoA, up to a limit at which the assumptions of the Dorrepaal model become questionable. Finally, a simple extension of the extended G¨ortler-H¨ammerlin ODE-based polynomial model proposed by Theofilis et al.4 is presented for the non-orthogonal flow. In this model, the symmetries of the three-dimensional disturbances are broken by the non-orthogonal flow conditions. Temporal and spatial one-dimensional linear eigenvalue codes were developed, obtaining consistent results with BiGlobal stability analysis and DNS. Beyond the computational advantages presented by the ODE-based model, it allows us to understand the functional dependence of the three-dimensional disturbances in the non-orthogonal case as well as their connections with the disturbances of the orthogonal stability problem.
Resumo:
An innovative dissipative multi-beam network for triangular arrays of three radiating elements is proposed. This novel network provides three orthogonal beams in θ0 elevation angle and a fourth one in the broadside steering direction. The network is composed of 90º hybrid couplers and fixed phase shifters. In this paper, a relation between network components, radiating element distance and beam steering directions will be shown. Application of the proposed dissipative network to the triangular cells of three radiating elements that integrate the intelligent antenna GEODA will be exhibited. This system works at 1.7 GHz, it has a 60º single radiating element beamwidth and a distance between array elements of 0.57 λ. Both beam patterns, theoretical and simulated, obtained with the network will be depicted. Moreover, the whole system, dissipative network built with GEODA cell array, has been measured in the anechoic chamber of the Radiation Group of Technical University of Madrid, demonstrating expected performance.
Resumo:
The sparse differential resultant dres(P) of an overdetermined system P of generic nonhomogeneous ordinary differential polynomials, was formally defined recently by Li, Gao and Yuan (2011). In this note, a differential resultant formula dfres(P) is defined and proved to be nonzero for linear "super essential" systems. In the linear case, dres(P) is proved to be equal, up to a nonzero constant, to dfres(P*) for the supper essential subsystem P* of P.
Resumo:
Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities is found. We illustrate and study the methods using data sampled from known parametric distributions, and we demonstrate their applicability by learning models based on real neuroscience data. Finally, we compare the performance of the proposed methods with an approach for learning mixtures of truncated basis functions (MoTBFs). The empirical results show that the proposed methods generally yield models that are comparable to or significantly better than those found using the MoTBF-based method.
Resumo:
We have investigated the efficiency of packing by calculating intramolecular packing density above and below peptide planes of internal beta-pleated sheet residues in five globular proteins. The orientation of interest was chosen to allow study of regions that are approximately perpendicular to the faces of beta-pleated sheets. In these locations, nonbonded van der Waals packing interactions predominate over hydrogen bonding and solvent interactions. We observed considerable variability in packing densities within these regions, confirming that the interior packing of a protein does not result in uniform occupation of the available space. Patterns of fluctuation in packing density suggest that the regular backbone-to-backbone network of hydrogen bonds is not likely to be interrupted to maximize van der Waals interactions. However, high-density packing tends to occur toward the ends of beta-structure strands where hydrogen bonds are more likely to involve nonpolar side-chain groups or solvent molecules. These features result in internal protein folding with a central low-density core surrounded by a higher-density subsurface shell, consistent with our previous calculations regarding overall protein packing density.
Resumo:
We compute the E-polynomials of the moduli spaces of representations of the fundamental group of a once-punctured surface of any genus into SL(2, C), for any possible holonomy around the puncture. We follow the geometric technique introduced in [12], based on stratifying the space of representations, and on the analysis of the behavior of the E-polynomial under fibrations.
Resumo:
Purpose: In this paper the authors aim to show the advantages of using the decomposition method introduced by Adomian to solve Emden's equation, a classical non‐linear equation that appears in the study of the thermal behaviour of a spherical cloud and of the gravitational potential of a polytropic fluid at hydrostatic equilibrium. Design/methodology/approach: In their work, the authors first review Emden's equation and its possible solutions using the Frobenius and power series methods; then, Adomian polynomials are introduced. Afterwards, Emden's equation is solved using Adomian's decomposition method and, finally, they conclude with a comparison of the solution given by Adomian's method with the solution obtained by the other methods, for certain cases where the exact solution is known. Findings: Solving Emden's equation for n in the interval [0, 5] is very interesting for several scientific applications, such as astronomy. However, the exact solution is known only for n=0, n=1 and n=5. The experiments show that Adomian's method achieves an approximate solution which overlaps with the exact solution when n=0, and that coincides with the Taylor expansion of the exact solutions for n=1 and n=5. As a result, the authors obtained quite satisfactory results from their proposal. Originality/value: The main classical methods for obtaining approximate solutions of Emden's equation have serious computational drawbacks. The authors make a new, efficient numerical implementation for solving this equation, constructing iteratively the Adomian polynomials, which leads to a solution of Emden's equation that extends the range of variation of parameter n compared to the solutions given by both the Frobenius and the power series methods.