994 resultados para Yu gong.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we obtain the necessary and sufficient conditions for embedding results of different function classes. The main result is a criterion for embedding theorems for the so-called generalized Weyl-Nikol'skii class and the generalized Lipschitz class. To define the Weyl-Nikol'skii class, we use the concept of a (λ,β)-derivative, which is a generalization of the derivative in the sense of Weyl. As corollaries, we give estimates of norms and moduli of smoothness of transformed Fourier series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document del fitxer adjunt

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document del fitxer adjunt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider the properties of moduli of smoothness of fractional order. The main result of the paper describes the equivalence of the modulus of smoothness and a function from some class.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

R.P. Boas has found necessary and sufficient conditions of belonging of function to Lipschitz class. From his findings it turned out, that the conditions on sine and cosine coefficients for belonging of function to Lip α(0 & α & 1) are the same, but for Lip 1 are different. Later his results were generalized by many authors in the viewpoint of generalization of condition on the majorant of modulus of continuity. The aim of this paper is to obtain Boas-type theorems for generalized Lipschitz classes. To define generalized Lipschitz classes we use the concept of modulus of smoothness of fractional order.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt"

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."