946 resultados para Yield strength.
Resumo:
Many research projects in life sciences require purified biologically active recombinant protein. In addition, different formats of a given protein may be needed at different steps of experimental studies. Thus, the number of protein variants to be expressed and purified in short periods of time can expand very quickly. We have therefore developed a rapid and flexible expression system based on described episomal vector replication to generate semi-stable cell pools that secrete recombinant proteins. We cultured these pools in serum-containing medium to avoid time-consuming adaptation of cells to serum-free conditions, maintain cell viability and reuse the cultures for multiple rounds of protein production. As such, an efficient single step affinity process to purify recombinant proteins from serum-containing medium was optimized. Furthermore, a series of multi-cistronic vectors were designed to enable simultaneous expression of proteins and their biotinylation in vivo as well as fast selection of protein-expressing cell pools. Combining these improved procedures and innovative steps, exemplified with seven cytokines and cytokine receptors, we were able to produce biologically active recombinant endotoxin free protein at the milligram scale in 4-6weeks from molecular cloning to protein purification.
Resumo:
Class A, B, and C concrete paving mixes were tested for compressive strength at 40°F and 73°F, both with and without fly ash substitution for 15% of the portland cement. Two Class C ashes and one Class F ash from Iowa approved sources were examined in each mix. The purpose of the study was to provide data on cool weather strength development of concrete paving mixes utilizing Iowa materials. In all cases except one, the fly ash concretes exhibited lower 7 and 28- day compressive strengths at 40°F than control mixes. The continuation of the October 15 cut-off date for the use of fly ash concrete is recommended.
Resumo:
The purpose of the study was to evaluate the shear bond strength of stainless steel orthodontic brackets directly bonded to extracted human premolar teeth. Fifty teeth were randomly divided into ¿ve groups: (1) System One (chemically cured composite resin), (2) Light Bond (light-cured composite resin), (3) Vivaglass Cem (self-curing glass ionomer cement), (4) Fuji Ortho LC (light-cured glass ionomer cement) used after 37% orthophosphoric acid¿etching of enamel (5) Fuji Ortho LC without orthophosphoric acid¿etching. The brackets were placed on the buccal and lingual surfaces of each tooth, and the specimens were stored in distilled water (24 hours) at 378C and thermocycled. Teeth were mounted on acrylic block frames, and brackets were debonded using an Instron machine. Shear bond strength values at fracture (Nw)were recorded. ANOVA and Student-Newman-Keuls multiple comparison tests were performed (P , .05). Bonding failure site was recorded by stereomicroscope and analyzed by Chi-square test, selected specimens of each group were observed by scanning electron microscope. System One attained the highest bond strength. Light Bond and Fuji Ortho LC, when using an acid-etching technique, obtained bond strengths that were within the range of estimated bond strength values for successful clinical bonding. Fuji Ortho LC and Vivaglass Cem left an almost clean enamel surface after debracketing.
Resumo:
The large volume of traffic on the interstate system makes it difficult to make pavement repairs. The maintenance crew needs 4-5 hours to break out the concrete to be replaced and prepare the hole for placing new concrete. Because of this it is usually noon before the patch can be placed. Since it is desirable to remove the barricades before dark there are only 7-8 hours for the concrete to reach the required strength. There exists a need for a concrete that can reach the necessary strength (modulus of rupture = 500 psi) in 7-8 hours. The purpose of this study is to determine if type III cement and/or an accelerator can be used in an M-4 mix to yield a fast setting patch with very little shrinkage. It is recognized that calcium chloride is a corrosive material and may therefore have detrimental effects upon the reinforcing steel. The study of these effects, however, is beyond the scope of this investigation.
Resumo:
Triaxial compression tests of two crushed limestones of differing highway service records indicate a fundamental difference in their shear strength -- void ratio relationship. Analyses were based on stress parameters at minimum sample volume, i.e., before there was significant sample dilation due to shear. The better service record sample compacted to higher density, and had a high effective angle of internal friction and zero effective cohesion. The other sample compacted to lower density and had a lower friction angle, but gained significant stability from effective cohesion. Repeated loading-unloading cycles reduced the cohesion, apparently due to modification of the sample structure. Extrapolations of the results to zero void ratio agree with sliding friction data reported on calcite, or with triaxial parameters reported on carbonate rocks.
Resumo:
The interrelation of curing time, curing temperature, strength, and reactions in lime-bentonite-water mixtures was examined. Samples were molded at constant density and moisture content and then cured for periods of from 1 to 56 days at constant temperatures that ranged from 5C to 60C. After the appropriate curing time the samples were tested for unconfined compressive strength. The broken samples were then analyzed by x-ray diffractometer and spectrophotometer to determine the identity of the reaction products present after each curing period. It was found that the strength gain of lime-clay mixtures cured at different temperatures is due to different phases of the complex reaction, lime & clay to CSH(gel) to CSH(II) to CSH(I) to tobermorite. The farther the reaction proceeds, the higher the strength. There was also evidence of lattice substitutions in the structure of the calcium silicate hydrates at curing temperatures of 50C and higher. No consistent relationship between time, temperature, strength, and the S/A ration of reaction products existed, but in order to achieve high strengths the apparent C/S ration had to be less than two. The curing temperature had an effect on the strength developed by a given amount of reacted silica in the cured lime-clay mixture, but at a given curing temperature the cured sample that had the largest amount of reacted silica gave the highest strength. Evidence was found to indicate that during the clay reaction some calcium is indeed adsorbed onto the clay structure rather than entering into a pozzolanic reaction. Finally, it was determined that it is possible to determine the amount of silica and alumina in lime-clay reaction products by spectrophotometric analysis with sufficient accuracy for comparison purposes. The spectrophotometric analysis techniques used during the investigation were simple and were not time consuming.
Resumo:
Selostus: Kylvötiheyden ja kasvunsääteiden vaikutus kevätrukiin satoon
Resumo:
The interest in reducing maize row spacing in the short growing season regions of Brazil is increasing due to potential advantages such as higher radiation use efficiency. This experiment was conducted to evaluate the effect of row spacing reduction on grain yield of different maize cultivars planted at different dates. The trial was conducted in Lages, in the State of Santa Catarina, Brazil, during 1996/97 and 1997/98 growing seasons, in a split-split plot design. Early (October 1st) and normal (November 15) planting dates were tested in the main plot; two morphologically contrasting cultivars (an early single-cross and a late double-cross hybrids) were evaluated in the split plots and three row widths (100, 75 and 50 cm) were studied in the split-split plots. The reduction of row spacing from 100 to 50 cm increased linearly maize grain yield. The yield edge provided by narrow rows was higher when maize was sown earlier in the season. Differences in hybrid cycle and plant architecture did not alter maize response to the reduction of row spacing.
Resumo:
Abstract
Resumo:
Selostus: Kasvunsääteiden vaikutukset tavanomaisen, paljasjyväisen ja kääpiökauran kasvuun ja sadonmuodostukseen
Resumo:
Abstract
Influence of micronutrients on dry matter yield and interaction with other nutrients in annual crops
Resumo:
The objective of this work was to determine the influence of Zn, Mn and Cu on shoot dry matter yield and uptake of macro and micronutrients in upland rice, common bean and corn. Six greenhouse experiments were conducted using a Dark Red Latosol (Typic Haplusthox). Treatments consisted of application of Zn at 0, 5, 10, 20, 40, 80 and 120 mg kg-1, of Mn at 0, 10, 20, 40, 80, 160, 320 and 640 mg kg-1 and of Cu application at 0, 2, 4, 8, 32, 64 and 96 mg kg-1. Zinc increased yield of rice, Mn increased yields of corn and bean and Cu improved yields of rice and bean. Uptake of N, Ca, and Cu in rice was decreased by zinc treatment. In common bean, uptake of N, Mg, and Cu was increased by zinc application, whereas, uptake of P was decreased. Manganese increased uptake of Mg, Zn and Fe and decreased uptake of Ca, in corn. Uptake of K, Zn and Mn was increased and uptake of P and Cu was decreased by Mn application, in bean. Copper had positive and negative interactions in the uptake of macro and micronutrients, depending on crop species and nutrients involved.
Resumo:
Photosynthetic activity of cereals has traditionally been studied using leaves, thus neglecting the role of other organs such as ears. Here, we studied the effects of water status and genotypes on the photosynthetic activity of the flag leaf blade and the ear of durum wheat. The various parameters related to the photosynthetic activity were analysed in relation to the total above-ground plant biomass and grain yield at maturity. Four local varieties plus two cultivars adapted to the semiarid areas of South Morocco were grown in pots in a greenhouse. Five different water treatments were maintained from the beginning of stem elongation to maturity, when shoot biomass and grain yield were recorded. The net photosynthesis (A), stomatal conductance (gs) and transpiration (T) of the ear and the flag leaf were measured at anthesis. In both organs these factors decreased significantly with water deficit, whereas the A/T and A/gs ratios increased. The genotype effect was also significant for all traits studied. Whole-organ photosynthesis was much higher in the ear than in the flag leaf in well-watered conditions. As water stress developed, photosynthesis decreased less in the ear than in the flag leaf. Whole-ear photosynthesis correlated better than flag leaf photosynthesis with biomass and yield. Nevertheless, the relationships of the whole flag leaf with biomass and yield improved as the water stress became more severe, suggesting a progressive shift of yield from sink to source limitation. For all water regimes the ratios A/gs and A/T of the ear also showed a higher (negative) correlation with both biomass and yield than those of the flag leaf. The results indicate that the ear has a greater photosynthetic role than the flag leaf in determining grain yield, not only in drought but also in the absence of stress.