962 resultados para Yang Zhenzong
Resumo:
To explore how cytohesin-1 (CYTH-1) small interfering RNA (siRNA) influences the insulin-like growth factor receptor (IGFR)-associated signal transduction in prostate cancer, we transfected human prostate cancer PC-3 cell lines with liposome-encapsulatedCYTH-1 siRNA in serum-free medium and exposed the cells to 100 nM IGF-1. The mRNA and protein levels of the signal molecules involved in the IGFR signaling pathways were determined by real-time PCR and detected by Western blotting. The relative mRNA levels of CYTH-1, c-Myc, cyclinD1 and IGF-1R (CYTH-1 siRNA group vs scrambled siRNA group) were 0.26 vs 0.97, 0.34 vs 1.06, 0.10 vs 0.95, and 0.27 vs 0.41 (P < 0.05 for all), respectively. The relative protein levels of CYTH-1, pIGF-1R, pIRS1, pAkt1, pErk1, c-Myc, and cyclinD1 (CYTH-1 siRNA group vsscrambled siRNA group) were 0.10 vs 1.00 (30 min), 0.10 vs 0.98 (30 min), 0.04 vs 0.50 (30 min), 0.10 vs 1.00 (30 min), 0.10 vs 1.00 (30 min), 0.13 vs 0.85 (5 h), and 0.08 vs 0.80 (7 h), respectively. The tyrosine kinase activity of IGF-1R was associated with CYTH-1. The proliferative activity of PC-3 cells transfected with CYTH-1 siRNA was significantly lower than that of cells transfected with scrambled siRNA at 48 h (40.5 vs87.6%, P < 0.05) and at 72 h (34.5 vs 93.5%, P < 0.05). In conclusion, the interference of siRNA with cytohesin-1 leads to reduced IGFR signaling in prostate cancer; therefore, CYTH-1 might serve as a new molecular target for the treatment of prostate cancer.
Resumo:
Research on molecular mechanisms of carcinogenesis plays an important role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to non-invasively identify the potential biomarkers for the early diagnosis of human gastric cancer. The aims of this study were to explore the underlying metabolic mechanisms of gastric cancer and to identify biomarkers associated with morbidity. Gas chromatography/mass spectrometry (GC/MS) was used to analyze the serum metabolites of 30 Chinese gastric cancer patients and 30 healthy controls. Diagnostic models for gastric cancer were constructed using orthogonal partial least squares discriminant analysis (OPLS-DA). Acquired metabolomic data were analyzed by the nonparametric Wilcoxon test to find serum metabolic biomarkers for gastric cancer. The OPLS-DA model showed adequate discrimination between cancer and non-cancer cohorts while the model failed to discriminate different pathological stages (I-IV) of gastric cancer patients. A total of 44 endogenous metabolites such as amino acids, organic acids, carbohydrates, fatty acids, and steroids were detected, of which 18 differential metabolites were identified with significant differences. A total of 13 variables were obtained for their greatest contribution in the discriminating OPLS-DA model [variable importance in the projection (VIP) value >1.0], among which 11 metabolites were identified using both VIP values (VIP >1) and the Wilcoxon test. These metabolites potentially revealed perturbations of glycolysis and of amino acid, fatty acid, cholesterol, and nucleotide metabolism of gastric cancer patients. These results suggest that gastric cancer serum metabolic profiling has great potential in detecting this disease and helping to understand its metabolic mechanisms.
Resumo:
Thymosin alpha 1 (Tα1) has been shown to have beneficial effects on numerous immune system parameters, but little is known about the effects of Tα1 on patients with gastric carcinoma. The objective of this study was to determine the effect of Tα1 on subpopulations of Th1, Th2, Th17, and regulatory T cells (Tregs) in vitro, and to evaluate its efficacy as an immunoregulatory factor in patients with gastric carcinoma. We compared the effect of Tα1 on the frequency of CD4+ and CD8+ T cells, especially the CD4+CD25+Foxp3+ Tregs in peripheral blood mononuclear cells (PBMCs) from gastric carcinoma patients (N = 35) and healthy donors (N = 22). We also analyzed the changes in the proliferation of PBMCs in response to treatment with Tα1, and examined the production of Th1, Th2, and Th17 cytokines by PBMCs and tumor-infiltrating lymphocytes. The treatment of PBMCs from gastric cancer patients, with Tα1 (50 µg/mL) alone increased the percentage of CD4+CD25+Foxp3+ (suppressive antitumor-specific Tregs) from 1.68 ± 0.697 to 2.19 ± 0.795% (P < 0.05). Our results indicate that Tα1 increases the percentage of Tregs and IL-1β, TNF-α, and IL-6 in vitro.
Resumo:
The objective of the present study was to investigate the effects of 3-n-butylphthalide (NBP) on a 1-methyl-4-phenylpyridinium (MPP+)-induced cellular model of Parkinson’s disease (PD) and to illustrate the potential mechanism of autophagy in this process. For this purpose, rat PC12 pheochromocytoma cells were treated with MPP+ (1 mM) for 24 h following pretreatment with NBP (0.1 mM). Cell metabolic viability was determined by the MTT assay and cell ultrastructure was examined by transmission electron microscopy. The intracellular distribution and expression of α-synuclein and microtubule-associated protein light chain 3 (LC3) were detected by immunocytochemistry and Western blotting. Our results demonstrated that: 1) NBP prevented MPP+-induced cytotoxicity in PC12 cells by promoting metabolic viability. 2) NBP induced the accumulation of autophagosomes in MPP+-treated PC12 cells. 3) Further study of the molecular mechanism demonstrated that NBP enhanced the colocalization of α-synuclein and LC3 and up-regulated the protein level of LC3-II. These results demonstrate that NBP protects PC12 cells against MPP+-induced neurotoxicity by activating autophagy-mediated α-synuclein degradation, implying that it may be a potential effective therapeutic agent for the treatment of PD.
Resumo:
This study explored the reduction of adenosine triphosphate (ATP) levels in L-02 hepatocytes by hexavalent chromium (Cr(VI)) using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI) for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT) experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI) treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%). The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI) treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI) group (P < 0.05). The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI) on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.
Resumo:
A dendritic cell (DC)-based vaccine strategy could reduce the risk of recurrence and improve the survival of breast cancer patients. However, while therapy-induced apoptosis of hepatocellular and colorectal carcinoma cells can enhance maturation and antigen presentation of DCs, whether this effect occurs in breast cancer is currently unknown. In the present study, we investigated the effect of doxorubicin (ADM)-induced apoptotic MCF-7 breast cancer cells on the activation of DCs. ADM-induced apoptotic MCF-7 cells could effectively induce immature DC (iDC) maturation. The mean fluorescence intensity (MFI) of DC maturity marker CD83 was 23.3 in the ADM-induced apoptotic MCF-7 cell group compared with 8.5 in the MCF-7 cell group. The MFI of DC co-stimulatory marker CD86 and HLA-DR were also increased after iDCs were treated with ADM-induced apoptotic MCF-7 cells. Furthermore, the proliferating autologous T-lymphocytes increased from 14.2 to 40.3% after incubated with DCs induced by apoptotic MCF-7 cells. The secretion of interferon-γ by these T-lymphocytes was also increased. In addition, cell-cell interaction between apoptotic MCF-7 cells and iDCs, but not soluble factors released by apoptotic MCF-7 cells, was crucial for the maturation of iDCs. These findings constitute a novel in vitro DC-based vaccine strategy for the treatment of breast cancer by ADM-induced apoptotic MCF-7 cells.
Resumo:
Crude extracts of house dust mites are used clinically for diagnosis and immunotherapy of allergic diseases, including bronchial asthma, perennial rhinitis, and atopic dermatitis. However, crude extracts are complexes with non-allergenic antigens and lack effective concentrations of important allergens, resulting in several side effects. Dermatophagoides farinae (Hughes; Acari: Pyroglyphidae) is one of the predominant sources of dust mite allergens, which has more than 30 groups of allergen. The cDNA coding for the group 5 allergen of D. farinae from China was cloned, sequenced and expressed. According to alignment using the VECTOR NTI 9.0 software, there were eight mismatched nucleotides in five cDNA clones resulting in seven incompatible amino acid residues, suggesting that the Der f 5 allergen might have sequence polymorphism. Bioinformatics analysis revealed that the matured Der f 5 allergen has a molecular mass of 13604.03 Da, a theoretical pI of 5.43 and is probably hydrophobic and cytoplasmic. Similarities in amino acid sequences between Der f 5 and allergens of other domestic mite species, viz. Der p 5, Blo t 5, Sui m 5, and Lep d 5, were 79, 48, 53, and 37%, respectively. Phylogenetic analysis indicated that Der f 5 and Der p 5 clustered together. Blo t 5 and Ale o 5 also clustered together, although Blomia tropicalis and Aleuroglyphus ovatus belong to different mite families, viz. Echimyopodidae and Acaridae, respectively.
Resumo:
The role of B cells in the pathogenesis of hepatitis B virus (HBV) infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20) and patients with acute hepatitis B (AHB, N = 15) or chronic hepatitis B (CHB, N = 30) was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26%) compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05), which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05). Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%), lowest in healthy donors (36.32 ± 9.98%, P < 0.05) and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05). The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions.
Resumo:
Hashimoto’s thyroiditis (HT) is considered to be mediated mainly by Th1 cells, but it is not known whether Graves’ disease (GD) is associated with Th1 or Th2 predominance. Th17 cells, a novel subset of Th cells, play a crucial role in the pathogenesis of various autoimmune disorders. In the present study, the expression of IL-17A and IFN-γ was investigated in patients with HT or GD. mRNA expression of IL-17A and IFN-γ in peripheral blood mononuclear cells (PBMC) from 43 patients with autoimmune thyroid disease (AITD) and in thyroid tissues from 40 AITD patients were measured by real-time qRT-PCR. The protein expression of IL-17A and IL-23p19 was examined by immunohistochemistry in thyroid tissues from 28 AITD patients. The mRNA levels of IL-17A and IFN-γ were higher in both PBMC and thyroid tissues of HT patients than in controls (mRNA levels are reported as the cytokine/β-actin ratio: IL-17 = 13.58- and 2.88-fold change and IFN-γ = 16.54- and 2.74-fold change, respectively, P < 0.05). Also, the mRNA levels of IL-17A and IFN-γ did not differ significantly in GD patients (P > 0.05). The high protein expression of IL-17A (IOD = 15.17 ± 4.8) and IL-23p19 (IOD = 16.84 ± 7.87) in HT was confirmed by immunohistochemistry (P < 0.05). The similar high levels of IL-17A and IFN-γ suggest a mixed response of Th17 and Th1 in HT, where both cells may play important roles in the destruction procedure by cell-mediated cytotoxicity.
Resumo:
Our previous study has shown that reduced insulin resistance (IR) was one of the possible mechanisms for the therapeutic effect of silibinin on non-alcoholic fatty liver disease (NAFLD) in rats. In the present study, we investigated the pathways of silibinin in regulating hepatic glucose production and IR amelioration. Forty-five 4- to 6-week-old male Sprague Dawley rats were divided into a control group, an HFD group (high-fat diet for 6 weeks) and an HFD + silibinin group (high-fat diet + 0.5 mg kg-1·day-1 silibinin, starting at the beginning of the protocol). Both subcutaneous and visceral fat was measured. Homeostasis model assessment-IR index (HOMA-IR), intraperitoneal glucose tolerance test and insulin tolerance test (ITT) were performed. The expression of adipose triglyceride lipase (ATGL) and of genes associated with hepatic gluconeogenesis was evaluated. Silibinin intervention significantly protected liver function, down-regulated serum fat, and improved IR, as shown by decreased HOMA-IR and increased ITT slope. Silibinin markedly prevented visceral obesity by reducing visceral fat, enhanced lipolysis by up-regulating ATGL expression and inhibited gluconeogenesis by down-regulating associated genes such as Forkhead box O1, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Silibinin was effective in ameliorating IR in NAFLD rats. Reduction of visceral obesity, enhancement of lipolysis and inhibition of gluconeogenesis might be the underlying mechanisms.
Resumo:
The aim of this study was to compare the effectiveness of attribution retraining group therapy (ARGT) with selective serotonin reuptake inhibitors (SSRIs) in the treatment of major depressive disorder (MDD), generalized anxiety disorder (GAD), and obsessive-compulsive disorder (OCD). Subjects were sequentially recruited and randomized into two groups, one receiving ARGT (n = 63) and the other SSRIs (n = 66) for 8 weeks. Fifty-four ARGT outpatients with MDD (n = 19), GAD (n = 19), and OCD (n = 16) and 55 SSRI outpatients with MDD (n = 19), GAD (n = 19), and OCD (n = 17) completed the study. All subjects were assessed using the Hamilton Depression Scale and Hamilton Anxiety Scale before and after treatment. The 10-item Yale-Brown Obsessive Compulsive Scale was employed only for OCD subjects. Plasma levels of serotonin, norepinephrine, cortisol, and adrenocorticotropic hormone were also measured at baseline and 8 weeks after completion of treatment. Symptom scores were significantly reduced (P < 0.001) in both the ARGT and SSRI groups at the end of treatment. However, MDD, GAD and OCD patients in the ARGT group had significantly lower plasma cortisol concentrations compared to baseline (P < 0.05), whereas MDD and OCD patients receiving SSRIs showed significantly increased plasma levels of serotonin (P < 0.05). These findings suggest that ARGT may modulate plasma cortisol levels and affect the hypothalamus-pituitary-adrenal axis as opposed to SSRIs, which may up-regulate plasma serotonin levels via a different pathway to produce an overall improvement in the clinical condition of the patients.
Resumo:
MP [4-(3′,3′-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniaeisolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characteristic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27KIP1 protein and p21CIP1 mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21CIP1, p16INK4a and Gadd45α, was significantly upregulated and mRNA levels demonstrated significantly increased translation ofp73, JunB, FKHR, andBim. The results indicate that MP may be a potential treatment for cervical cancer.
Resumo:
Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.
Resumo:
Siva-1 induces apoptosis in multiple pathological processes and plays an important role in the suppression of tumor metastasis, protein degradation, and other functions. Although many studies have demonstrated that Siva-1 functions in the cytoplasm, a few have found that Siva-1 can relocate to the nucleus. In this study, we found that the first 33 amino acid residues of Siva-1 are required for its nuclear localization. Further study demonstrated that the green fluorescent protein can be imported into the nucleus after fusion with these 33 amino acid residues. Other Siva-1 regions and domains showed less effect on Siva-1 nuclear localization. By site-mutagenesis of all of these 33 amino acid residues, we found that mutants of the first 1-18 amino acids affected Siva-1 nuclear compartmentalization but could not complete this localization independently. In summary, we demonstrated that the N-terminal 33 amino acid residues were sufficient for Siva-1 nuclear localization, but the mechanism of this translocation needs additional investigation.
Resumo:
Our objective was to investigate the efficacy and safety of capecitabine maintenance therapy (CMT) after capecitabine-based combination chemotherapy in patients with metastatic breast cancer. The clinical data of 139 metastatic breast cancer patients treated from March 2008 to May 2012 with capecitabine-based combination chemotherapy were retrospectively analyzed. When initial disease control was achieved by the combination chemotherapy, we used CMT for 50 patients, while 37 patients were treated with a different (non-CMT) maintenance therapy. We compared time to progression (TTP), objective response rate, disease control rate, clinical benefit rate, and safety of the two groups, and a sub-group analysis was performed according to pathological characteristics. Sixty-four percent of the patients received a median of six cycles of a docetaxel+capecitabine combination chemotherapy regimen (range 1-45); the median TTP (MTTP) for the complete treatment was 9.43 months (95%CI=8.38-10.48 months) for the CMT group and 4.5 months (95%CI=4.22-4.78 months; P=0.004) for the non-CMT group. The MTTPs for the maintenance therapies administered after the initial capecitabine combined chemotherapy were 4.11 months (95%CI=3.34-4.87 months) for the CMT group and 2.0 months (95%CI=1.63-2.38 months) for the non-CMT group. Gastrointestinal side effects, decreased white blood cells and palmar-plantar erythrodysesthesia were the main adverse reactions experienced with the combination chemotherapies, CMT and non-CMT treatments. No significant differences in the incidence of adverse reactions were detected in the CMT and non-CMT patients. After initial disease control was achieved with the capecitabine-based combination chemotherapy, CMT can significantly prolong TTP rates with a favorable safety profile.