934 resultados para X ray absorption fine structures
Resumo:
The copper(II) complex [Cu(bdoa)(H2O)2] (bdoaH2 = benzene-1,2-dioxyacetic acid) reacts with triphenylphosphine (1:4 mol ratio) to give the colourless copper(I) complex [Cu(η1-bdoaH)(PPh3)3] (1) in good yield. The X-ray crystal structure of the complex shows the copper atom at the centre of a distorted tetrahedron, and is ligated by the phosphorus atoms of the three triphenylphosphines and one carboxylate oxygen atom of the bdoaH− ligand. Significant intermolecular hydrogen-bonding exists between the pendant carboxylate OH function of one molecule and the uncoordinated “ketonic” oxygen of a neighbouring molecule. Complex 1 is non-conducting in chloroform but ionizes readily in acetonitrile. The cyclic voltammogram of an acetonitrile solution of 1 shows a single irreversible anodic peak for the oxidation of the PPh3 ligands and the copper(I) centre, and a single irreversible cathodic peak for the reduction of the bdoaH− ion. IR and mass spectral data for 1 are given.
Resumo:
The regio- and stereoselective photoinduced addition of N-carbomethoxymethylpyrrolidine to 5(S)-tert-butyldimethylsiloxymethyl-furan-2(5H)-one in the presence of benzophenone yields 3(R)-[N-(diphenylhydroxymethyl)carbo methoxymethylpyrrolidin-2′-yl]-4(S)-tert-butyldimethylsiloxymethyl)-butan-4-olides (epimeric at C-2′), and we report the X-ray structure of the major adduct together with its conversion into the 1-azabicyclo[4.3.0]-nonane ring system.
Resumo:
[Et3NH]4[Mo8O26] (1) was prepared by reacting triethylamine with either molybdenum trioxide dihydrate or with a solution of ammonium molybdate in aqueous HCl. An aqueous solution of complex 1 reacted with an excess of sodium chloride to give a mixture of [Et3NH]3[NaMo8O26] (2) and [Et3NH]2[Mo6O19] (3). Complex 2 was also formed on reacting sodium molybdate with triethylamine in aqueous HCl. In the reaction of 1 with potassium chloride the nature of the product obtained was critically dependent upon reaction time. After a 5.5 h reflux period a mixture of [Et3NH]3[KMo8O26] (4) and 3 was obtained, whereas upon prolonged reflux (24 h) only K4Mo8O26 · H2O (5) was precipitated. The X-ray crystal structure of 2 shows it to be polymeric, with each Na+ ion sandwiched between two β[Mo8O26]4− ions. Four oxygen atoms on one face of each β[Mo8O26]4− ion are coordinated to a Na+ ion, and four oxygens from the opposite face are bonded to the next Na+ ion in the polymer chain. This produces a zig-zag arrangement of Na+ ions throughout the molecular structure. Spectral, conductivity and voltammetry data are given.
Resumo:
Copper(II) acetate reacts with benzene-1,2-dioxyacetic acid (bdoaH2) in aqueous media to give [Cu(bdoa)(H2O)2] (1). Complex 1 reacts with the N-donor ligands pyridine (py), ammonia and 1,10-phenanthroline (phen) to give [Cu(bdoa)(NH3)2]·H2O (2), [Cu(bdoa)(py)2]·H2O (3) and [Cu2(bdoa)(phen)4]bdoa·13H2O (4), respectively. The X-ray crystal structure of the dicopper(II,II) complex 4 shows each copper atom at the centre of a distorted trigonal bipyramid comprising four nitrogen atoms from two chelating phen ligands and a single oxygen atom from one of the carboxylate moieties of the bridging bdoa2− ligand. The cyclic voltammogram of 4 shows a single reversible wave for the Cu2+/Cu+ couple at E = + 115 mV (vs Ag/AgCl). Spectroscopic and magnetic data for the complexes are given.
Resumo:
[Ru2(μ-O2CCH3)4Cl] reacts readily with aqueous Ag2SO4 (2: 1 molar ratio) to give the sulphate salt [Ru2(μ-O2CCH3)4(H2O)2]2(SO4) (1). Addition of NaBPh4 to an aqueous solution of 1 produces the ether-soluble tetraphenylborate salt [Ru2(μ-O2CCH3)4(H2O)2][BPh4] (2). A methanolic solution of 1 reacts with Ba(C6H5CCCO2)2 · H2O to give the tetraacetatemonophenylpropynoate complex [Ru2(μ-O2CCH3)4(O2CCCC6H5)] · H2O (3). The reaction of an ethanolic suspension of [Ru2(μ-O2CC6H5)4Cl] with Ag2SO4 and H2SO4 (2 : 1 : 1 molar ratio) leads to the tetra-μ-benzoatodiruthenium(II,III) double complex salt [Ru2(μ-O2CC6H5)4(C2H5OH)2][Ru2(μ-O2CC6H5)4(HSO4)2] (4). Complex 4 is also obtained by reacting an ethanolic solution of 1 with an excess of benzoic acid in the presence of H2SO4. The X-ray crystal structure of 4 shows it to consist of [Ru2(μ-O2CC6H5)4(C2H5OH)2]+ and [Ru2(μ-O2CC6H5)4(HSO4)2]− ions, which are linked together by hydrogen bonds into an infinite polymeric chain. The RuRu distances in the cation and anion are very similar [2.265(2) and 2.272(2) Å, respectively]. Spectroscopic, magnetic, conductivity and cyclic voltammetry data are given for the complexes.
Resumo:
The reaction of the fulvalene titanium(III) hydride [{Ti(η5-C5H5)(μ-H)}2(μ-η5-η5-C10H8)] (1) with chlorine leads to [{Ti(η5-C5H5)(μ-Cl)}2(μ-η5-η5-C10H8)] (3) and [{Ti(η5-C5H5)Cl2}2(μ-η5-η5-C10H8)] (4). The reaction of 3 with azobenzene, in wet toluene, gives [{Ti(η5-C5H5)Cl}2(μ-O)(μ-η5-η5-C10H8)] (5) and 1,2-diphenyl hydrazine. The alkylation of 4 and the analogous zirconium complex [{Zr(η5-C5H55)Cl2}2(μ-η5-η5-C10H8)] (2) with LiCH2SiMe3 or LiCH3 permits isolation of the tetraalkyl derivatives [{M(η5-C5H5)(CH2SiMe3)2}2(μ-η5-η5-C10H8)] (M Ti (6); Zr (8)) and [{Ti(η5-C5H5)(CH3)2}2(μ-η5-η5C10H8)] (7). All the new fulvalene compounds were characterized by IR, and 1H and 13C NMR spectroscope, and mass spectra and 5 by X-ray diffraction. The structure of 5 is very similar to that of the comparable TiIV compound [{Ti(η5-C5H5)2Cl}2(μ-O)] except for the smaller TiOTi angle (159.4° against 173.81°) and a significant deviation from linearity.
Resumo:
W(CO)6 reacts with a mixture of acetic acid/acetic anhydride to give [W3 (μ3-O)2(μ2η2-O2CCH3)6(H2O)3](CH3CO2)2 (1), which was converted by HClO4 to [W3 (μ3-O)2(μ2η2-O2CCH3)6(H2O)3](ClO4)2 (2). Addition of CH3CO2Na to the above reaction mixture, and prolonged exposure of the solution to air, results in the formation of the WIV/WVI complex salt [W3(μ3-O)2(μ2η2-O2CCH3)6(H2O)3]2[W10O32]·solvent (3). Complex 3 was also prepared by reacting 1 with Na2WO4·2H2O in acetic acid, and it has been characterized by X-ray crystallography. Addition of [CH3(CH2)3]4N(ClO4) to the reaction filtrate remaining after the preparation of [Mo2(μ-O2CCH3)4][from Mo(CO)6, CH3CO2H and (CH3CO)2O], followed by exposure to air, gives ([CH3(CH2)3]4N)2[Mo6O19] (4).
Resumo:
[Cu2(μO2CCH3)4(H2O)2], [CuCO3·Cu(OH)2], [CoSO4·7H2O], [Co((+)-tartrate)], and [FeSO4·7H2O] react with excess racemic (±)- 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate {(±)-PhosH} to give mononuclear CuII, CoII and FeII products. The cobalt product, [Co(CH3OH)4(H2O)2]((+)-Phos)((−)-Phos) ·2CH3OH·H2O (7), has been identified by X-ray diffraction. The high-spin, octahedral CoII atom is ligated by four equatorial methanol molecules and two axial water molecules. A (+)- and a (−)-Phos− ion are associated with each molecule of the complex but are not coordinated to the metal centre. For the other CoII, CuII and FeII samples of similar formulation to (7) it is also thought that the Phos− ions are not bonded directly to the metal. When some of the CuII and CoII samples are heated under high vacuum there is evidence that the Phos− ions are coordinated directly to the metals in the products.
Resumo:
The title compound, the first homoleptic Group 6A metal alkenyl, has been prepared from CrCl3·3(thf), and its properties, including X-ray crystal structure determination, are reported.
Resumo:
The X-ray diffraction pattern of glassy poly(2-hydroxypropyl ether of bisphenol A) is studied at room temperature on oriented samples in order to associate its different peaks to different structural correlations. On the other hand, X-ray diffraction patterns have been obtained at different temperatures from Tg − 50 K up to Tg + 50 K for the above-mentioned polymer. Attention has been paid to the evolution with temperature of the position of the wide diffraction maximum corresponding to interchain correlations in the polymer. The temperature evolution of this parameter shows a marked discontinuity just at the glass transition temperature.
Resumo:
A novel X-ray rheometer based on a parallel plate geometry is described. This system allows time-resolved X-ray scattering intensity data to be obtained from polymeric samples subjected to shear flow. The range of quantitative structural parameters, such as molecular orientation and inter chain correlations, which can be obtained from the data is highlighted. Examples of the utility of X-ray scattering in examining optically opaque samples and the extraction of 〈P2〉 and 〈P4〉 orientation parameters are given using anisotropic hydroxypropylcellulose solutions as the sample.