830 resultados para Wireless local area networks
Resumo:
In this work is presented a new method for sensor deployment on 3D surfaces. The method was structured on different steps. The first one aimed discretizes the relief of interest with Delaunay algorithm. The tetrahedra and relative values (spatial coordinates of each vertex and faces) were input to construction of 3D Voronoi diagram. Each circumcenter was calculated as a candidate position for a sensor node: the corresponding circular coverage area was calculated based on a radius r. The r value can be adjusted to simulate different kinds of sensors. The Dijkstra algorithm and a selection method were applied to eliminate candidate positions with overlapped coverage areas or beyond of surface of interest. Performance evaluations measures were defined using coverage area and communication as criteria. The results were relevant, once the mean coverage rate achieved on three different surfaces were among 91% and 100%.
Resumo:
Since the appearance of downsized and simplified TCP/IP stacks, single nodes from Wireless Sensor Networks (WSNs) have become directly accessible from the Internet with commonly used networking tools and applications (e.g., Telnet or SMTP). However, TCP has been shown to perform poorly in wireless networks, especially across multiple wireless hops. This paper examines TCP performance optimizations based on distributed caching and local retransmission strategies of intermediate nodes in a TCP connection, and proposes extended techniques to these strategies. The paper studies the impact of different radio duty-cycling MAC protocols on the end-to-end TCP performance when using the proposed TCP optimization strategies in an extensive experimental evaluation on a real-world sensor network testbed.
Resumo:
Wireless Mesh Networks (WMN) have proven to be a key technology for increased network coverage of Internet infrastructures. The development process for new protocols and architectures in the area of WMN is typically split into evaluation by network simulation and testing of a prototype in a test-bed. Testing a prototype in a real test-bed is time-consuming and expensive. Irrepressible external interferences can occur which makes debugging difficult. Moreover, the test-bed usually supports only a limited number of test topologies. Finally, mobility tests are impractical. Therefore, we propose VirtualMesh as a new testing architecture which can be used before going to a real test-bed. It provides instruments to test the real communication software including the network stack inside a controlled environment. VirtualMesh is implemented by capturing real traffic through a virtual interface at the mesh nodes. The traffic is then redirected to the network simulator OMNeT++. In our experiments, VirtualMesh has proven to be scalable and introduces moderate delays. Therefore, it is suitable for predeployment testing of communication software for WMNs.
Resumo:
This work addresses the evolution of an artificial neural network (ANN) to assist in the problem of indoor robotic localization. We investigate the design and building of an autonomous localization system based on information gathered from wireless networks (WN). The article focuses on the evolved ANN, which provides the position of a robot in a space, as in a Cartesian coordinate system, corroborating with the evolutionary robotic research area and showing its practical viability. The proposed system was tested in several experiments, evaluating not only the impact of different evolutionary computation parameters but also the role of the transfer functions on the evolution of the ANN. Results show that slight variations in the parameters lead to significant differences on the evolution process and, therefore, in the accuracy of the robot position.
Resumo:
This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.
Resumo:
El interés cada vez mayor por las redes de sensores inalámbricos pueden ser entendido simplemente pensando en lo que esencialmente son: un gran número de pequeños nodos sensores autoalimentados que recogen información o detectan eventos especiales y se comunican de manera inalámbrica, con el objetivo final de entregar sus datos procesados a una estación base. Los nodos sensores están densamente desplegados dentro del área de interés, se pueden desplegar al azar y tienen capacidad de cooperación. Por lo general, estos dispositivos son pequeños y de bajo costo, de modo que pueden ser producidos y desplegados en gran numero aunque sus recursos en términos de energía, memoria, velocidad de cálculo y ancho de banda están enormemente limitados. Detección, tratamiento y comunicación son tres elementos clave cuya combinación en un pequeño dispositivo permite lograr un gran número de aplicaciones. Las redes de sensores proporcionan oportunidades sin fin, pero al mismo tiempo plantean retos formidables, tales como lograr el máximo rendimiento de una energía que es escasa y por lo general un recurso no renovable. Sin embargo, los recientes avances en la integración a gran escala, integrado de hardware de computación, comunicaciones, y en general, la convergencia de la informática y las comunicaciones, están haciendo de esta tecnología emergente una realidad. Del mismo modo, los avances en la nanotecnología están empezando a hacer que todo gire entorno a las redes de pequeños sensores y actuadores distribuidos. Hay diferentes tipos de sensores tales como sensores de presión, acelerómetros, cámaras, sensores térmicos o un simple micrófono. Supervisan las condiciones presentes en diferentes lugares tales como la temperatura, humedad, el movimiento, la luminosidad, presión, composición del suelo, los niveles de ruido, la presencia o ausencia de ciertos tipos de objetos, los niveles de tensión mecánica sobre objetos adheridos y las características momentáneas tales como la velocidad , la dirección y el tamaño de un objeto, etc. Se comprobara el estado de las Redes Inalámbricas de Sensores y se revisaran los protocolos más famosos. Así mismo, se examinara la identificación por radiofrecuencia (RFID) ya que se está convirtiendo en algo actual y su presencia importante. La RFID tiene un papel crucial que desempeñar en el futuro en el mundo de los negocios y los individuos por igual. El impacto mundial que ha tenido la identificación sin cables está ejerciendo fuertes presiones en la tecnología RFID, los servicios de investigación y desarrollo, desarrollo de normas, el cumplimiento de la seguridad y la privacidad y muchos más. Su potencial económico se ha demostrado en algunos países mientras que otros están simplemente en etapas de planificación o en etapas piloto, pero aun tiene que afianzarse o desarrollarse a través de la modernización de los modelos de negocio y aplicaciones para poder tener un mayor impacto en la sociedad. Las posibles aplicaciones de redes de sensores son de interés para la mayoría de campos. La monitorización ambiental, la guerra, la educación infantil, la vigilancia, la micro-cirugía y la agricultura son solo unos pocos ejemplos de los muchísimos campos en los que tienen cabida las redes mencionadas anteriormente. Estados Unidos de América es probablemente el país que más ha investigado en esta área por lo que veremos muchas soluciones propuestas provenientes de ese país. Universidades como Berkeley, UCLA (Universidad de California, Los Ángeles) Harvard y empresas como Intel lideran dichas investigaciones. Pero no solo EE.UU. usa e investiga las redes de sensores inalámbricos. La Universidad de Southampton, por ejemplo, está desarrollando una tecnología para monitorear el comportamiento de los glaciares mediante redes de sensores que contribuyen a la investigación fundamental en glaciología y de las redes de sensores inalámbricos. Así mismo, Coalesenses GmbH (Alemania) y Zurich ETH están trabajando en diversas aplicaciones para redes de sensores inalámbricos en numerosas áreas. Una solución española será la elegida para ser examinada más a fondo por ser innovadora, adaptable y polivalente. Este estudio del sensor se ha centrado principalmente en aplicaciones de tráfico, pero no se puede olvidar la lista de más de 50 aplicaciones diferentes que ha sido publicada por la firma creadora de este sensor específico. En la actualidad hay muchas tecnologías de vigilancia de vehículos, incluidos los sensores de bucle, cámaras de video, sensores de imagen, sensores infrarrojos, radares de microondas, GPS, etc. El rendimiento es aceptable, pero no suficiente, debido a su limitada cobertura y caros costos de implementación y mantenimiento, especialmente este ultimo. Tienen defectos tales como: línea de visión, baja exactitud, dependen mucho del ambiente y del clima, no se puede realizar trabajos de mantenimiento sin interrumpir las mediciones, la noche puede condicionar muchos de ellos, tienen altos costos de instalación y mantenimiento, etc. Por consiguiente, en las aplicaciones reales de circulación, los datos recibidos son insuficientes o malos en términos de tiempo real debido al escaso número de detectores y su costo. Con el aumento de vehículos en las redes viales urbanas las tecnologías de detección de vehículos se enfrentan a nuevas exigencias. Las redes de sensores inalámbricos son actualmente una de las tecnologías más avanzadas y una revolución en la detección de información remota y en las aplicaciones de recogida. Las perspectivas de aplicación en el sistema inteligente de transporte son muy amplias. Con este fin se ha desarrollado un programa de localización de objetivos y recuento utilizando una red de sensores binarios. Esto permite que el sensor necesite mucha menos energía durante la transmisión de información y que los dispositivos sean más independientes con el fin de tener un mejor control de tráfico. La aplicación se centra en la eficacia de la colaboración de los sensores en el seguimiento más que en los protocolos de comunicación utilizados por los nodos sensores. Las operaciones de salida y retorno en las vacaciones son un buen ejemplo de por qué es necesario llevar la cuenta de los coches en las carreteras. Para ello se ha desarrollado una simulación en Matlab con el objetivo localizar objetivos y contarlos con una red de sensores binarios. Dicho programa se podría implementar en el sensor que Libelium, la empresa creadora del sensor que se examinara concienzudamente, ha desarrollado. Esto permitiría que el aparato necesitase mucha menos energía durante la transmisión de información y los dispositivos sean más independientes. Los prometedores resultados obtenidos indican que los sensores de proximidad binarios pueden formar la base de una arquitectura robusta para la vigilancia de áreas amplias y para el seguimiento de objetivos. Cuando el movimiento de dichos objetivos es suficientemente suave, no tiene cambios bruscos de trayectoria, el algoritmo ClusterTrack proporciona un rendimiento excelente en términos de identificación y seguimiento de trayectorias los objetos designados como blancos. Este algoritmo podría, por supuesto, ser utilizado para numerosas aplicaciones y se podría seguir esta línea de trabajo para futuras investigaciones. No es sorprendente que las redes de sensores de binarios de proximidad hayan atraído mucha atención últimamente ya que, a pesar de la información mínima de un sensor de proximidad binario proporciona, las redes de este tipo pueden realizar un seguimiento de todo tipo de objetivos con la precisión suficiente. Abstract The increasing interest in wireless sensor networks can be promptly understood simply by thinking about what they essentially are: a large number of small sensing self-powered nodes which gather information or detect special events and communicate in a wireless fashion, with the end goal of handing their processed data to a base station. The sensor nodes are densely deployed inside the phenomenon, they deploy random and have cooperative capabilities. Usually these devices are small and inexpensive, so that they can be produced and deployed in large numbers, and so their resources in terms of energy, memory, computational speed and bandwidth are severely constrained. Sensing, processing and communication are three key elements whose combination in one tiny device gives rise to a vast number of applications. Sensor networks provide endless opportunities, but at the same time pose formidable challenges, such as the fact that energy is a scarce and usually non-renewable resource. However, recent advances in low power Very Large Scale Integration, embedded computing, communication hardware, and in general, the convergence of computing and communications, are making this emerging technology a reality. Likewise, advances in nanotechnology and Micro Electro-Mechanical Systems are pushing toward networks of tiny distributed sensors and actuators. There are different sensors such as pressure, accelerometer, camera, thermal, and microphone. They monitor conditions at different locations, such as temperature, humidity, vehicular movement, lightning condition, pressure, soil makeup, noise levels, the presence or absence of certain kinds of objects, mechanical stress levels on attached objects, the current characteristics such as speed, direction and size of an object, etc. The state of Wireless Sensor Networks will be checked and the most famous protocols reviewed. As Radio Frequency Identification (RFID) is becoming extremely present and important nowadays, it will be examined as well. RFID has a crucial role to play in business and for individuals alike going forward. The impact of ‘wireless’ identification is exerting strong pressures in RFID technology and services research and development, standards development, security compliance and privacy, and many more. The economic value is proven in some countries while others are just on the verge of planning or in pilot stages, but the wider spread of usage has yet to take hold or unfold through the modernisation of business models and applications. Possible applications of sensor networks are of interest to the most diverse fields. Environmental monitoring, warfare, child education, surveillance, micro-surgery, and agriculture are only a few examples. Some real hardware applications in the United States of America will be checked as it is probably the country that has investigated most in this area. Universities like Berkeley, UCLA (University of California, Los Angeles) Harvard and enterprises such as Intel are leading those investigations. But not just USA has been using and investigating wireless sensor networks. University of Southampton e.g. is to develop technology to monitor glacier behaviour using sensor networks contributing to fundamental research in glaciology and wireless sensor networks. Coalesenses GmbH (Germany) and ETH Zurich are working in applying wireless sensor networks in many different areas too. A Spanish solution will be the one examined more thoroughly for being innovative, adaptable and multipurpose. This study of the sensor has been focused mainly to traffic applications but it cannot be forgotten the more than 50 different application compilation that has been published by this specific sensor’s firm. Currently there are many vehicle surveillance technologies including loop sensors, video cameras, image sensors, infrared sensors, microwave radar, GPS, etc. The performance is acceptable but not sufficient because of their limited coverage and expensive costs of implementation and maintenance, specially the last one. They have defects such as: line-ofsight, low exactness, depending on environment and weather, cannot perform no-stop work whether daytime or night, high costs for installation and maintenance, etc. Consequently, in actual traffic applications the received data is insufficient or bad in terms of real-time owed to detector quantity and cost. With the increase of vehicle in urban road networks, the vehicle detection technologies are confronted with new requirements. Wireless sensor network is the state of the art technology and a revolution in remote information sensing and collection applications. It has broad prospect of application in intelligent transportation system. An application for target tracking and counting using a network of binary sensors has been developed. This would allow the appliance to spend much less energy when transmitting information and to make more independent devices in order to have a better traffic control. The application is focused on the efficacy of collaborative tracking rather than on the communication protocols used by the sensor nodes. Holiday crowds are a good case in which it is necessary to keep count of the cars on the roads. To this end a Matlab simulation has been produced for target tracking and counting using a network of binary sensors that e.g. could be implemented in Libelium’s solution. Libelium is the enterprise that has developed the sensor that will be deeply examined. This would allow the appliance to spend much less energy when transmitting information and to make more independent devices. The promising results obtained indicate that binary proximity sensors can form the basis for a robust architecture for wide area surveillance and tracking. When the target paths are smooth enough ClusterTrack particle filter algorithm gives excellent performance in terms of identifying and tracking different target trajectories. This algorithm could, of course, be used for different applications and that could be done in future researches. It is not surprising that binary proximity sensor networks have attracted a lot of attention lately. Despite the minimal information a binary proximity sensor provides, networks of these sensing modalities can track all kinds of different targets classes accurate enough.
Resumo:
Wireless sensor networks are posed as the new communication paradigm where the use of small, low-complexity, and low-power devices is preferred over costly centralized systems. The spectra of potential applications of sensor networks is very wide, ranging from monitoring, surveillance, and localization, among others. Localization is a key application in sensor networks and the use of simple, efficient, and distributed algorithms is of paramount practical importance. Combining convex optimization tools with consensus algorithms we propose a distributed localization algorithm for scenarios where received signal strength indicator readings are used. We approach the localization problem by formulating an alternative problem that uses distance estimates locally computed at each node. The formulated problem is solved by a relaxed version using semidefinite relaxation technique. Conditions under which the relaxed problem yields to the same solution as the original problem are given and a distributed consensusbased implementation of the algorithm is proposed based on an augmented Lagrangian approach and primaldual decomposition methods. Although suboptimal, the proposed approach is very suitable for its implementation in real sensor networks, i.e., it is scalable, robust against node failures and requires only local communication among neighboring nodes. Simulation results show that running an additional local search around the found solution can yield performance close to the maximum likelihood estimate.
Resumo:
Wireless sensor networks (WSNs) have shown their potentials in various applications, which bring a lot of benefits to users from both research and industrial areas. For many setups, it is envisioned thatWSNs will consist of tens to hundreds of nodes that operate on small batteries. However due to the diversity of the deployed environments and resource constraints on radio communication, sensing ability and energy supply, it is a very challenging issue to plan optimized WSN topology and predict its performance before real deployment. During the network planning phase, the connectivity, coverage, cost, network longevity and service quality should all be considered. Therefore it requires designers coping with comprehensive and interdisciplinary knowledge, including networking, radio engineering, embedded system and so on, in order to efficiently construct a reliable WSN for any specific types of environment. Nowadays there is still a lack of the analysis and experiences to guide WSN designers to efficiently construct WSN topology successfully without many trials. Therefore, simulation is a feasible approach to the quantitative analysis of the performance of wireless sensor networks. However the existing planning algorithms and tools, to some extent, have serious limitations to practically design reliable WSN topology: Only a few of them tackle the 3D deployment issue, and an overwhelming number of works are proposed to place devices in 2D scheme. Without considering the full dimension, the impacts of environment to the performance of WSN are not completely studied, thus the values of evaluated metrics such as connectivity and sensing coverage are not sufficiently accurate to make proper decision. Even fewer planning methods model the sensing coverage and radio propagation by considering the realistic scenario where obstacles exist. Radio signals propagate with multi-path phenomenon in the real world, in which direct paths, reflected paths and diffracted paths contribute to the received signal strength. Besides, obstacles between the path of sensor and objects might block the sensing signals, thus create coverage hole in the application. None of the existing planning algorithms model the network longevity and packet delivery capability properly and practically. They often employ unilateral and unrealistic formulations. The optimization targets are often one-sided in the current works. Without comprehensive evaluation on the important metrics, the performance of planned WSNs can not be reliable and entirely optimized. Modeling of environment is usually time consuming and the cost is very high, while none of the current works figure out any method to model the 3D deployment environment efficiently and accurately. Therefore many researchers are trapped by this issue, and their algorithms can only be evaluated in the same scenario, without the possibility to test the robustness and feasibility for implementations in different environments. In this thesis, we propose a novel planning methodology and an intelligent WSN planning tool to assist WSN designers efficiently planning reliable WSNs. First of all, a new method is proposed to efficiently and automatically model the 3D indoor and outdoor environments. To the best of our knowledge, this is the first time that the advantages of image understanding algorithm are applied to automatically reconstruct 3D outdoor and indoor scenarios for signal propagation and network planning purpose. The experimental results indicate that the proposed methodology is able to accurately recognize different objects from the satellite images of the outdoor target regions and from the scanned floor plan of indoor area. Its mechanism offers users a flexibility to reconstruct different types of environment without any human interaction. Thereby it significantly reduces human efforts, cost and time spent on reconstructing a 3D geographic database and allows WSN designers concentrating on the planning issues. Secondly, an efficient ray-tracing engine is developed to accurately and practically model the radio propagation and sensing signal on the constructed 3D map. The engine contributes on efficiency and accuracy to the estimated results. By using image processing concepts, including the kd-tree space division algorithm and modified polar sweep algorithm, the rays are traced efficiently without detecting all the primitives in the scene. The radio propagation model iv is proposed, which emphasizes not only the materials of obstacles but also their locations along the signal path. The sensing signal of sensor nodes, which is sensitive to the obstacles, is benefit from the ray-tracing algorithm via obstacle detection. The performance of this modelling method is robust and accurate compared with conventional methods, and experimental results imply that this methodology is suitable for both outdoor urban scenes and indoor environments. Moreover, it can be applied to either GSM communication or ZigBee protocol by varying frequency parameter of the radio propagation model. Thirdly, WSN planning method is proposed to tackle the above mentioned challenges and efficiently deploy reliable WSNs. More metrics (connectivity, coverage, cost, lifetime, packet latency and packet drop rate) are modeled more practically compared with other works. Especially 3D ray tracing method is used to model the radio link and sensing signal which are sensitive to the obstruction of obstacles; network routing is constructed by using AODV protocol; the network longevity, packet delay and packet drop rate are obtained via simulating practical events in WSNet simulator, which to the best of our knowledge, is the first time that network simulator is involved in a planning algorithm. Moreover, a multi-objective optimization algorithm is developed to cater for the characteristics of WSNs. The capability of providing multiple optimized solutions simultaneously allows users making their own decisions accordingly, and the results are more comprehensively optimized compared with other state-of-the-art algorithms. iMOST is developed by integrating the introduced algorithms, to assist WSN designers efficiently planning reliable WSNs for different configurations. The abbreviated name iMOST stands for an Intelligent Multi-objective Optimization Sensor network planning Tool. iMOST contributes on: (1) Convenient operation with a user-friendly vision system; (2) Efficient and automatic 3D database reconstruction and fast 3D objects design for both indoor and outdoor environments; (3) It provides multiple multi-objective optimized 3D deployment solutions and allows users to configure the network properties, hence it can adapt to various WSN applications; (4) Deployment solutions in the 3D space and the corresponding evaluated performance are visually presented to users; and (5) The Node Placement Module of iMOST is available online as well as the source code of the other two rebuilt heuristics. Therefore WSN designers will be benefit from v this tool on efficiently constructing environment database, practically and efficiently planning reliable WSNs for both outdoor and indoor applications. With the open source codes, they are also able to compare their developed algorithms with ours to contribute to this academic field. Finally, solid real results are obtained for both indoor and outdoor WSN planning. Deployments have been realized for both indoor and outdoor environments based on the provided planning solutions. The measured results coincide well with the estimated results. The proposed planning algorithm is adaptable according to the WSN designer’s desirability and configuration, and it offers flexibility to plan small and large scale, indoor and outdoor 3D deployments. The thesis is organized in 7 chapters. In Chapter 1, WSN applications and motivations of this work are introduced, the state-of-the-art planning algorithms and tools are reviewed, challenges are stated out and the proposed methodology is briefly introduced. In Chapter 2, the proposed 3D environment reconstruction methodology is introduced and its performance is evaluated for both outdoor and indoor environment. The developed ray-tracing engine and proposed radio propagation modelling method are described in details in Chapter 3, their performances are evaluated in terms of computation efficiency and accuracy. Chapter 4 presents the modelling of important metrics of WSNs and the proposed multi-objective optimization planning algorithm, the performance is compared with the other state-of-the-art planning algorithms. The intelligent WSN planning tool iMOST is described in Chapter 5. RealWSN deployments are prosecuted based on the planned solutions for both indoor and outdoor scenarios, important data are measured and results are analysed in Chapter 6. Chapter 7 concludes the thesis and discusses about future works. vi Resumen en Castellano Las redes de sensores inalámbricas (en inglés Wireless Sensor Networks, WSNs) han demostrado su potencial en diversas aplicaciones que aportan una gran cantidad de beneficios para el campo de la investigación y de la industria. Para muchas configuraciones se prevé que las WSNs consistirán en decenas o cientos de nodos que funcionarán con baterías pequeñas. Sin embargo, debido a la diversidad de los ambientes para desplegar las redes y a las limitaciones de recursos en materia de comunicación de radio, capacidad de detección y suministro de energía, la planificación de la topología de la red y la predicción de su rendimiento es un tema muy difícil de tratar antes de la implementación real. Durante la fase de planificación del despliegue de la red se deben considerar aspectos como la conectividad, la cobertura, el coste, la longevidad de la red y la calidad del servicio. Por lo tanto, requiere de diseñadores con un amplio e interdisciplinario nivel de conocimiento que incluye la creación de redes, la ingeniería de radio y los sistemas embebidos entre otros, con el fin de construir de manera eficiente una WSN confiable para cualquier tipo de entorno. Hoy en día todavía hay una falta de análisis y experiencias que orienten a los diseñadores de WSN para construir las topologías WSN de manera eficiente sin realizar muchas pruebas. Por lo tanto, la simulación es un enfoque viable para el análisis cuantitativo del rendimiento de las redes de sensores inalámbricos. Sin embargo, los algoritmos y herramientas de planificación existentes tienen, en cierta medida, serias limitaciones para diseñar en la práctica una topología fiable de WSN: Sólo unos pocos abordan la cuestión del despliegue 3D mientras que existe una gran cantidad de trabajos que colocan los dispositivos en 2D. Si no se analiza la dimensión completa (3D), los efectos del entorno en el desempeño de WSN no se estudian por completo, por lo que los valores de los parámetros evaluados, como la conectividad y la cobertura de detección, no son lo suficientemente precisos para tomar la decisión correcta. Aún en menor medida los métodos de planificación modelan la cobertura de los sensores y la propagación de la señal de radio teniendo en cuenta un escenario realista donde existan obstáculos. Las señales de radio en el mundo real siguen una propagación multicamino, en la que los caminos directos, los caminos reflejados y los caminos difractados contribuyen a la intensidad de la señal recibida. Además, los obstáculos entre el recorrido del sensor y los objetos pueden bloquear las señales de detección y por lo tanto crear áreas sin cobertura en la aplicación. Ninguno de los algoritmos de planificación existentes modelan el tiempo de vida de la red y la capacidad de entrega de paquetes correctamente y prácticamente. A menudo se emplean formulaciones unilaterales y poco realistas. Los objetivos de optimización son a menudo tratados unilateralmente en los trabajos actuales. Sin una evaluación exhaustiva de los parámetros importantes, el rendimiento previsto de las redes inalámbricas de sensores no puede ser fiable y totalmente optimizado. Por lo general, el modelado del entorno conlleva mucho tiempo y tiene un coste muy alto, pero ninguno de los trabajos actuales propone algún método para modelar el entorno de despliegue 3D con eficiencia y precisión. Por lo tanto, muchos investigadores están limitados por este problema y sus algoritmos sólo se pueden evaluar en el mismo escenario, sin la posibilidad de probar la solidez y viabilidad para las implementaciones en diferentes entornos. En esta tesis, se propone una nueva metodología de planificación así como una herramienta inteligente de planificación de redes de sensores inalámbricas para ayudar a los diseñadores a planificar WSNs fiables de una manera eficiente. En primer lugar, se propone un nuevo método para modelar demanera eficiente y automática los ambientes interiores y exteriores en 3D. Según nuestros conocimientos hasta la fecha, esta es la primera vez que las ventajas del algoritmo de _image understanding_se aplican para reconstruir automáticamente los escenarios exteriores e interiores en 3D para analizar la propagación de la señal y viii la planificación de la red. Los resultados experimentales indican que la metodología propuesta es capaz de reconocer con precisión los diferentes objetos presentes en las imágenes satelitales de las regiones objetivo en el exterior y de la planta escaneada en el interior. Su mecanismo ofrece a los usuarios la flexibilidad para reconstruir los diferentes tipos de entornos sin ninguna interacción humana. De este modo se reduce considerablemente el esfuerzo humano, el coste y el tiempo invertido en la reconstrucción de una base de datos geográfica con información 3D, permitiendo así que los diseñadores se concentren en los temas de planificación. En segundo lugar, se ha desarrollado un motor de trazado de rayos (en inglés ray tracing) eficiente para modelar con precisión la propagación de la señal de radio y la señal de los sensores en el mapa 3D construido. El motor contribuye a la eficiencia y la precisión de los resultados estimados. Mediante el uso de los conceptos de procesamiento de imágenes, incluyendo el algoritmo del árbol kd para la división del espacio y el algoritmo _polar sweep_modificado, los rayos se trazan de manera eficiente sin la detección de todas las primitivas en la escena. El modelo de propagación de radio que se propone no sólo considera los materiales de los obstáculos, sino también su ubicación a lo largo de la ruta de señal. La señal de los sensores de los nodos, que es sensible a los obstáculos, se ve beneficiada por la detección de objetos llevada a cabo por el algoritmo de trazado de rayos. El rendimiento de este método de modelado es robusto y preciso en comparación con los métodos convencionales, y los resultados experimentales indican que esta metodología es adecuada tanto para escenas urbanas al aire libre como para ambientes interiores. Por otra parte, se puede aplicar a cualquier comunicación GSM o protocolo ZigBee mediante la variación de la frecuencia del modelo de propagación de radio. En tercer lugar, se propone un método de planificación de WSNs para hacer frente a los desafíos mencionados anteriormente y desplegar redes de sensores fiables de manera eficiente. Se modelan más parámetros (conectividad, cobertura, coste, tiempo de vida, la latencia de paquetes y tasa de caída de paquetes) en comparación con otros trabajos. Especialmente el método de trazado de rayos 3D se utiliza para modelar el enlace de radio y señal de los sensores que son sensibles a la obstrucción de obstáculos; el enrutamiento de la red se construye utilizando el protocolo AODV; la longevidad de la red, retardo de paquetes ix y tasa de abandono de paquetes se obtienen a través de la simulación de eventos prácticos en el simulador WSNet, y según nuestros conocimientos hasta la fecha, es la primera vez que simulador de red está implicado en un algoritmo de planificación. Por otra parte, se ha desarrollado un algoritmo de optimización multi-objetivo para satisfacer las características de las redes inalámbricas de sensores. La capacidad de proporcionar múltiples soluciones optimizadas de forma simultánea permite a los usuarios tomar sus propias decisiones en consecuencia, obteniendo mejores resultados en comparación con otros algoritmos del estado del arte. iMOST se desarrolla mediante la integración de los algoritmos presentados, para ayudar de forma eficiente a los diseñadores en la planificación de WSNs fiables para diferentes configuraciones. El nombre abreviado iMOST (Intelligent Multi-objective Optimization Sensor network planning Tool) representa una herramienta inteligente de planificación de redes de sensores con optimización multi-objetivo. iMOST contribuye en: (1) Operación conveniente con una interfaz de fácil uso, (2) Reconstrucción eficiente y automática de una base de datos con información 3D y diseño rápido de objetos 3D para ambientes interiores y exteriores, (3) Proporciona varias soluciones de despliegue optimizadas para los multi-objetivo en 3D y permite a los usuarios configurar las propiedades de red, por lo que puede adaptarse a diversas aplicaciones de WSN, (4) las soluciones de implementación en el espacio 3D y el correspondiente rendimiento evaluado se presentan visualmente a los usuarios, y (5) El _Node Placement Module_de iMOST está disponible en línea, así como el código fuente de las otras dos heurísticas de planificación. Por lo tanto los diseñadores WSN se beneficiarán de esta herramienta para la construcción eficiente de la base de datos con información del entorno, la planificación práctica y eficiente de WSNs fiables tanto para aplicaciones interiores y exteriores. Con los códigos fuente abiertos, son capaces de comparar sus algoritmos desarrollados con los nuestros para contribuir a este campo académico. Por último, se obtienen resultados reales sólidos tanto para la planificación de WSN en interiores y exteriores. Los despliegues se han realizado tanto para ambientes de interior y como para ambientes de exterior utilizando las soluciones de planificación propuestas. Los resultados medidos coinciden en gran medida con los resultados estimados. El algoritmo de planificación x propuesto se adapta convenientemente al deiseño de redes de sensores inalámbricas, y ofrece flexibilidad para planificar los despliegues 3D a pequeña y gran escala tanto en interiores como en exteriores. La tesis se estructura en 7 capítulos. En el Capítulo 1, se presentan las aplicaciones de WSN y motivaciones de este trabajo, se revisan los algoritmos y herramientas de planificación del estado del arte, se presentan los retos y se describe brevemente la metodología propuesta. En el Capítulo 2, se presenta la metodología de reconstrucción de entornos 3D propuesta y su rendimiento es evaluado tanto para espacios exteriores como para espacios interiores. El motor de trazado de rayos desarrollado y el método de modelado de propagación de radio propuesto se describen en detalle en el Capítulo 3, evaluándose en términos de eficiencia computacional y precisión. En el Capítulo 4 se presenta el modelado de los parámetros importantes de las WSNs y el algoritmo de planificación de optimización multi-objetivo propuesto, el rendimiento se compara con los otros algoritmos de planificación descritos en el estado del arte. La herramienta inteligente de planificación de redes de sensores inalámbricas, iMOST, se describe en el Capítulo 5. En el Capítulo 6 se llevan a cabo despliegues reales de acuerdo a las soluciones previstas para los escenarios interiores y exteriores, se miden los datos importantes y se analizan los resultados. En el Capítulo 7 se concluye la tesis y se discute acerca de los trabajos futuros.
Resumo:
In this paper we propose a flexible Multi-Agent Architecture together with a methodology for indoor location which allows us to locate any mobile station (MS) such as a Laptop, Smartphone, Tablet or a robotic system in an indoor environment using wireless technology. Our technology is complementary to the GPS location finder as it allows us to locate a mobile system in a specific room on a specific floor using the Wi-Fi networks. The idea is that any MS will have an agent known at a Fuzzy Location Software Agent (FLSA) with a minimum capacity processing at its disposal which collects the power received at different Access Points distributed around the floor and establish its location on a plan of the floor of the building. In order to do so it will have to communicate with the Fuzzy Location Manager Software Agent (FLMSA). The FLMSAs are local agents that form part of the management infrastructure of the Wi-Fi network of the Organization. The FLMSA implements a location estimation methodology divided into three phases (measurement, calibration and estimation) for locating mobile stations (MS). Our solution is a fingerprint-based positioning system that overcomes the problem of the relative effect of doors and walls on signal strength and is independent of the network device manufacturer. In the measurement phase, our system collects received signal strength indicator (RSSI) measurements from multiple access points. In the calibration phase, our system uses these measurements in a normalization process to create a radio map, a database of RSS patterns. Unlike traditional radio map-based methods, our methodology normalizes RSS measurements collected at different locations on a floor. In the third phase, we use Fuzzy Controllers to locate an MS on the plan of the floor of a building. Experimental results demonstrate the accuracy of the proposed method. From these results it is clear that the system is highly likely to be able to locate an MS in a room or adjacent room.
Resumo:
El consumo energético de las Redes de Sensores Inalámbricas (WSNs por sus siglas en inglés) es un problema histórico que ha sido abordado desde diferentes niveles y visiones, ya que no solo afecta a la propia supervivencia de la red sino que el creciente uso de dispositivos inteligentes y el nuevo paradigma del Internet de las Cosas hace que las WSNs tengan cada vez una mayor influencia en la huella energética. Debido a la tendencia al alza en el uso de estas redes se añade un nuevo problema, la saturación espectral. Las WSNs operan habitualmente en bandas sin licencia como son las bandas Industrial, Científica y Médica (ISM por sus siglas en inglés). Estas bandas se comparten con otro tipo de redes como Wi-Fi o Bluetooth cuyo uso ha crecido exponencialmente en los últimos años. Para abordar este problema aparece el paradigma de la Radio Cognitiva (CR), una tecnología que permite el acceso oportunista al espectro. La introducción de capacidades cognitivas en las WSNs no solo permite optimizar su eficiencia espectral sino que también tiene un impacto positivo en parámetros como la calidad de servicio, la seguridad o el consumo energético. Sin embargo, por otra parte, este nuevo paradigma plantea algunos retos relacionados con el consumo energético. Concretamente, el sensado del espectro, la colaboración entre los nodos (que requiere comunicación adicional) y el cambio en los parámetros de transmisión aumentan el consumo respecto a las WSN clásicas. Teniendo en cuenta que la investigación en el campo del consumo energético ha sido ampliamente abordada puesto que se trata de una de sus principales limitaciones, asumimos que las nuevas estrategias deben surgir de las nuevas capacidades añadidas por las redes cognitivas. Por otro lado, a la hora de diseñar estrategias de optimización para CWSN hay que tener muy presentes las limitaciones de recursos de estas redes en cuanto a memoria, computación y consumo energético de los nodos. En esta tesis doctoral proponemos dos estrategias de reducción de consumo energético en CWSNs basadas en tres pilares fundamentales. El primero son las capacidades cognitivas añadidas a las WSNs que proporcionan la posibilidad de adaptar los parámetros de transmisión en función del espectro disponible. La segunda es la colaboración, como característica intrínseca de las CWSNs. Finalmente, el tercer pilar de este trabajo es teoría de juegos como algoritmo de soporte a la decisión, ampliamente utilizado en WSNs debido a su simplicidad. Como primer aporte de la tesis se presenta un análisis completo de las posibilidades introducidas por la radio cognitiva en materia de reducción de consumo para WSNs. Gracias a las conclusiones extraídas de este análisis, se han planteado las hipótesis de esta tesis relacionadas con la validez de usar capacidades cognitivas como herramienta para la reducción de consumo en CWSNs. Una vez presentada las hipótesis, pasamos a desarrollar las principales contribuciones de la tesis: las dos estrategias diseñadas para reducción de consumo basadas en teoría de juegos y CR. La primera de ellas hace uso de un juego no cooperativo que se juega mediante pares de jugadores. En la segunda estrategia, aunque el juego continúa siendo no cooperativo, se añade el concepto de colaboración. Para cada una de las estrategias se presenta el modelo del juego, el análisis formal de equilibrios y óptimos y la descripción de la estrategia completa donde se incluye la interacción entre nodos. Con el propósito de probar las estrategias mediante simulación e implementación en dispositivos reales hemos desarrollado un marco de pruebas compuesto por un simulador cognitivo y un banco de pruebas formado por nodos cognitivos capaces de comunicarse en tres bandas ISM desarrollados en el B105 Lab. Este marco de pruebas constituye otra de las aportaciones de la tesis que permitirá el avance en la investigación en el área de las CWSNs. Finalmente, se presentan y discuten los resultados derivados de la prueba de las estrategias desarrolladas. La primera estrategia proporciona ahorros de energía mayores al 65% comparados con una WSN sin capacidades cognitivas y alrededor del 25% si la comparamos con una estrategia cognitiva basada en el sensado periódico del espectro para el cambio de canal de acuerdo a un nivel de ruido fijado. Este algoritmo se comporta de forma similar independientemente del nivel de ruido siempre que éste sea espacialmente uniformemente. Esta estrategia, a pesar de su sencillez, nos asegura el comportamiento óptimo en cuanto a consumo energético debido a la utilización de teoría de juegos en la fase de diseño del comportamiento de los nodos. La estrategia colaborativa presenta mejoras respecto a la anterior en términos de protección frente al ruido en escenarios de ruido más complejos donde aporta una mejora del 50% comparada con la estrategia anterior. ABSTRACT Energy consumption in Wireless Sensor Networks (WSNs) is a known historical problem that has been addressed from different areas and on many levels. But this problem should not only be approached from the point of view of their own efficiency for survival. A major portion of communication traffic has migrated to mobile networks and systems. The increased use of smart devices and the introduction of the Internet of Things (IoT) give WSNs a great influence on the carbon footprint. Thus, optimizing the energy consumption of wireless networks could reduce their environmental impact considerably. In recent years, another problem has been added to the equation: spectrum saturation. Wireless Sensor Networks usually operate in unlicensed spectrum bands such as Industrial, Scientific, and Medical (ISM) bands shared with other networks (mainly Wi-Fi and Bluetooth). To address the efficient spectrum utilization problem, Cognitive Radio (CR) has emerged as the key technology that enables opportunistic access to the spectrum. Therefore, the introduction of cognitive capabilities to WSNs allows optimizing their spectral occupation. Cognitive Wireless Sensor Networks (CWSNs) do not only increase the reliability of communications, but they also have a positive impact on parameters such as the Quality of Service (QoS), network security, or energy consumption. These new opportunities introduced by CWSNs unveil a wide field in the energy consumption research area. However, this also implies some challenges. Specifically, the spectrum sensing stage, collaboration among devices (which requires extra communication), and changes in the transmission parameters increase the total energy consumption of the network. When designing CWSN optimization strategies, the fact that WSN nodes are very limited in terms of memory, computational power, or energy consumption has to be considered. Thus, light strategies that require a low computing capacity must be found. Since the field of energy conservation in WSNs has been widely explored, we assume that new strategies could emerge from the new opportunities presented by cognitive networks. In this PhD Thesis, we present two strategies for energy consumption reduction in CWSNs supported by three main pillars. The first pillar is that cognitive capabilities added to the WSN provide the ability to change the transmission parameters according to the spectrum. The second pillar is that the ability to collaborate is a basic characteristic of CWSNs. Finally, the third pillar for this work is the game theory as a decision-making algorithm, which has been widely used in WSNs due to its lightness and simplicity that make it valid to operate in CWSNs. For the development of these strategies, a complete analysis of the possibilities is first carried out by incorporating the cognitive abilities into the network. Once this analysis has been performed, we expose the hypotheses of this thesis related to the use of cognitive capabilities as a useful tool to reduce energy consumption in CWSNs. Once the analyses are exposed, we present the main contribution of this thesis: the two designed strategies for energy consumption reduction based on game theory and cognitive capabilities. The first one is based on a non-cooperative game played between two players in a simple and selfish way. In the second strategy, the concept of collaboration is introduced. Despite the fact that the game used is also a non-cooperative game, the decisions are taken through collaboration. For each strategy, we present the modeled game, the formal analysis of equilibrium and optimum, and the complete strategy describing the interaction between nodes. In order to test the strategies through simulation and implementation in real devices, we have developed a CWSN framework composed by a CWSN simulator based on Castalia and a testbed based on CWSN nodes able to communicate in three different ISM bands. We present and discuss the results derived by the energy optimization strategies. The first strategy brings energy improvement rates of over 65% compared to WSN without cognitive techniques. It also brings energy improvement rates of over 25% compared with sensing strategies for changing channels based on a decision threshold. We have also seen that the algorithm behaves similarly even with significant variations in the level of noise while working in a uniform noise scenario. The collaborative strategy presents improvements respecting the previous strategy in terms of noise protection when the noise scheme is more complex where this strategy shows improvement rates of over 50%.
Resumo:
To exploit the popularity of TCP as still the dominant sender and protocol of choice for transporting data reliably across the heterogeneous Internet, this thesis explores end-to-end performance issues and behaviours of TCP senders when transferring data to wireless end-users. The theme throughout is on end-users located specifically within 802.11 WLANs at the edges of the Internet, a largely untapped area of work. To exploit the interests of researchers wanting to study the performance of TCP accurately over heterogeneous conditions, this thesis proposes a flexible wired-to-wireless experimental testbed that better reflects conditions in the real-world. To exploit the transparent functionalities between TCP in the wired domain and the IEEE 802.11 WLAN protocols, this thesis proposes a more accurate methodology for gauging the transmission and error characteristics of real-world 802.11 WLANs. It also aims to correlate any findings with the functionality of fixed TCP senders. To exploit the popularity of Linux as a popular operating system for many of the Internet’s data servers, this thesis studies and evaluates various sender-side TCP congestion control implementations within the recent Linux v2.6. A selection of the implementations are put under systematic testing using real-world wired-to-wireless conditions in order to screen and present a viable candidate/s for further development and usage in the modern-day heterogeneous Internet. Overall, this thesis comprises a set of systematic evaluations of TCP senders over 802.11 WLANs, incorporating measurements in the form of simulations, emulations, and through the use of a real-world-like experimental testbed. The goal of the work is to ensure that all aspects concerned are comprehensively investigated in order to establish rules that can help to decide under which circumstances the deployment of TCP is optimal i.e. a set of paradigms for advancing the state-of-the-art in data transport across the Internet.
Resumo:
Wireless sensor networks have been identified as one of the key technologies for the 21st century. In order to overcome their limitations such as fault tolerance and conservation of energy, we propose a middleware solution, In-Motes. In-Motes stands as a fault tolerant platform for deploying and monitoring applications in real time offers a number of possibilities for the end user giving him in parallel the freedom to experiment with various parameters, in an effort the deployed applications to run in an energy efficient manner inside the network. The proposed scheme is evaluated through the In-Motes EYE application, aiming to test its merits under real time conditions. In-Motes EYE application which is an agent based real time In-Motes application developed for sensing acceleration variations in an environment. The application was tested in a prototype area, road alike, for a period of four months.
Resumo:
Limited energy is a big challenge for large scale wireless sensor networks (WSN). Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, the impacts of using modulation scaling on packet delivery latency and loss are not considered, which may have adverse effects on the application qualities. In this paper, we study this problem and propose control schemes to minimize energy consumption while ensuring application qualities. We first analyze the relationships of modulation scaling and energy consumption, end-to-end delivery latency and packet loss ratio. With the analytical model, we develop a centralized control scheme to adaptively adjust the modulation levels, in order to minimize energy consumption and ensure the application qualities. To improve the scalability of the centralized control scheme, we also propose a distributed control scheme. In this scheme, the sink will send the differences between the required and measured application qualities to the sensors. The sensors will update their modulation levels with the local information and feedback from the sink. Experimental results show the effectiveness of energy saving and QoS guarantee of the control schemes. The control schemes can adapt efficiently to the time-varying requirements on application qualities. Copyright © 2005 The Institute of Electronics, Information and Communication Engineers.
Resumo:
This dissertation proposed a self-organizing medium access control protocol (MAC) for wireless sensor networks (WSNs). The proposed MAC protocol, space division multiple access (SDMA), relies on sensor node position information and provides sensor nodes access to the wireless channel based on their spatial locations. SDMA divides a geographical area into space divisions, where there is one-to-one map between the space divisions and the time slots. Therefore, the MAC protocol requirement is the sensor node information of its position and a prior knowledge of the one-to-one mapping function. The scheme is scalable, self-maintaining, and self-starting. It provides collision-free access to the wireless channel for the sensor nodes thereby, guarantees delay-bounded communication in real time for delay sensitive applications. This work was divided into two parts: the first part involved the design of the mapping function to map the space divisions to the time slots. The mapping function is based on a uniform Latin square. A Uniform Latin square of order k = m 2 is an k x k square matrix that consists of k symbols from 0 to k-1 such that no symbol appears more than once in any row, in any column, or in any m x in area of main subsquares. The uniqueness of each symbol in the main subsquares presents very attractive characteristic in applying a uniform Latin square to time slot allocation problem in WSNs. The second part of this research involved designing a GPS free positioning system for position information. The system is called time and power based localization scheme (TPLS). TPLS is based on time difference of arrival (TDoA) and received signal strength (RSS) using radio frequency and ultrasonic signals to measure and detect the range differences from a sensor node to three anchor nodes. TPLS requires low computation overhead and no time synchronization, as the location estimation algorithm involved only a simple algebraic operation.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. ^ This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.^