939 resultados para Waveguide geometry
Resumo:
Quantum computers hold great promise for solving interesting computational problems, but it remains a challenge to find efficient quantum circuits that can perform these complicated tasks. Here we show that finding optimal quantum circuits is essentially equivalent to finding the shortest path between two points in a certain curved geometry. By recasting the problem of finding quantum circuits as a geometric problem, we open up the possibility of using the mathematical techniques of Riemannian geometry to suggest new quantum algorithms or to prove limitations on the power of quantum computers.
Resumo:
Promoted-ignition testing on carbon steel rods of varying cross-sectional area and shape was performed in high pressure oxygen to assess the effect of sample geometry on the regression rate of the melting interface. Cylindrical and rectangular geometries and three different cross sections were tested and the regression rates of the cylinders were compared to the regression rates of the rectangular samples at test pressures around 6.9 MPa. Tests were recorded and video analysis used to determine the regression rate of the melting interface by a new method based on a drop cycle which was found to provide a good basis for statistical analysis and provide excellent agreement to the standard averaging methods used. Both geometries tested showed the typical trend of decreasing regression rate of the melting interface with increasing cross-sectional area; however, it was shown that the effect of geometry is more significant as the sample's cross sections become larger. Discussion is provided regarding the use of 3.2-mm square rods rather than 3.2-mm cylindrical rods within the standard ASTM test and any effect this may have on the observed regression rate of the melting interface.
Resumo:
This work presents closed form solutions for fully developed temperature distribution and entropy generation due to forced convection in microelectromechanical systems (MEMS) in the Slip-flow regime, for which the Knudsen number lies within the range 0.001
Resumo:
Recent years have witnessed intense research in multiple input multiple output (MIMO) wireless communications systems, which use multiple element antennas (MEA) for signal transmission and reception. In this paper, we have described a novel electromagnetic model to investigate the effect of mutual coupling, inter-element spacing and array geometry on the capacity of MIMO systems. Simulation results have been presented illustrating the application of the proposed model. The presented model concept stems from a hollow waveguide analogue. Using this model other aspects such as richness of scattering environment (spacing and clustering), the effect of hard versus soft scatterers and pin hole effect can be investigated.
Resumo:
Abstract—This paper describes an electrical model of the ventricles incorporating real geometry and motion. Cardiac geometry and motion is obtained from segmentations of multipleslice MRI time sequences. A static heart model developed previously is deformed to match the observed geometry using a novel shape registration algorithm. The resulting electrocardiograms and body surface potential maps are compared to a static simulation in the resting heart. These results demonstrate that introducing motion into the cardiac model modifies the ECG during the T wave at peak contraction of the ventricles.
Investigation of the Effect of Array Geometry on the Performance of Free-Space Optical Interconnects
Resumo:
The effect of transmitter and receiver array configurations on the stray-light and diffraction-caused crosstalk in free-space optical interconnects was investigated. The optical system simulation software (Code V) is used to simulate both the stray-light and diffraction-caused crosstalk. Experimentally measured, spectrally-resolved, near-field images of VCSEL higher order modes were used as extended sources in our simulation model. In addition, we have included the electrical and optical noise in our analysis to give more accurate overall performance of the FSOI system. Our results show that by changing the square lattice geometry to a hexagonal configuration, we obtain an overall signal-to-noise ratio improvement of 3 dB. Furthermore, system density is increased by up to 4 channels/mm2.
Resumo:
Eddy currents induced within a magnetic resonance imaging (MRI) cryostat bore during pulsing of gradient coils can be applied constructively together with the gradient currents that generate them, to obtain good quality gradient uniformities within a specified imaging volume over time. This can be achieved by simultaneously optimizing the spatial distribution and temporal pre-emphasis of the gradient coil current, to account for the spatial and temporal variation of the secondary magnetic fields due to the induced eddy currents. This method allows the tailored design of gradient coil/magnet configurations and consequent engineering trade-offs. To compute the transient eddy currents within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using total-field scattered-field (TFSF) scheme has been performed and validated