947 resultados para Water-storage
Resumo:
Theoretical models suggest that overlapping generations, in combination with a temporally fluctuating environment, may allow the persistence of competitors that otherwise would not coexist. Despite extensive theoretical development, this “storage effect” hypothesis has received little empirical attention. Herein I present the first explicit mathematical analysis of the contribution of the storage effect to the dynamics of competing natural populations. In Oneida Lake, NY, data collected over the past 30 years show a striking negative correlation between the water-column densities of two species of suspension-feeding zooplankton, Daphnia galeata mendotae and Daphnia pulicaria. I have demonstrated competition between these two species and have shown that both possess long-lived eggs that establish overlapping generations. Moreover, recruitment to this long-lived stage varies annually, so that both daphnids have years in which they are favored (for recruitment) relative to their competitor. When the long-term population growth rates are calculated both with and without the effects of a variable environment, I show that D. galeata mendotae clearly cannot persist without the environmental variation and prolonged dormancy (i.e., storage effect) whereas D. pulicaria persists through consistently high per capita recruitment to the long-lived stage.
Resumo:
Although the occurrence of intracellular glasses in seeds and pollen has been established, physical properties such as rotational correlation times and viscosity have not been studied extensively. Using electron paramagnetic resonance spectroscopy, we examined changes in the molecular mobility of the hydrophilic nitroxide spin probe 3-carboxy-proxyl during melting of intracellular glasses in axes of pea (Pisum sativum L.) seeds and cattail (Typha latifolia L.) pollen. The rotational correlation time of the spin probe in intracellular glasses of both organisms was approximately 10−3 s. Using the distance between the outer extrema of the electron paramagnetic resonance spectrum (2Azz) as a measure of molecular mobility, we found a sharp increase in mobility at a definite temperature during heating. This temperature increased with decreasing water content of the samples. Differential scanning calorimetry data on these samples indicated that this sharp increase corresponded to melting of the glassy matrix. Molecular mobility was found to be inversely correlated with storage stability. With decreasing water content, the molecular mobility reached a minimum, and increased again at very low water content. Minimum mobility and maximum storage stability occurred at a similar water content. This correlation suggests that storage stability might be at least partially controlled by molecular mobility. At low temperatures, when storage longevity cannot be determined on a realistic time scale, 2Azz measurements can provide an estimate of the optimum storage conditions.
Resumo:
A conditioning procedure is proposed allowing to install into the concrete specimens any selected value of water saturation degree with homogeneous moisture distribution. This is achieved within the least time and the minimum alteration of the concrete specimens. The protocol has the following steps: obtaining basic drying data at 50 °C (water absorption capacity and drying curves); unidirectional drying of the specimens at 50 °C until reaching the target saturation degree values; redistribution phase in closed containers at 50 °C (with measurement of the quasi-equilibrium relative humidities); storage into controlled environment chambers until and during mass transport tests, if necessary. A water transport model is used to derive transport parameters of the tested materials from the drying data, i.e., relative permeabilities and apparent water diffusion coefficients. The model also allows calculating moisture profiles during isothermal drying and redistribution phases, thus allowing optimization of the redistribution times for obtaining homogeneous moisture distributions.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"DOE/EV/10154-T1."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"HWRIC RR-074."
Resumo:
"Based on Technical bulletin no. 578, Spreading water for storage underground."
Resumo:
Experiments were conducted to investigate physiological mechanisms of solid matrix priming (SMP) on germination enhancement of loblolly pine (Pinus taeda) seeds. During SMP, osmotic potential in the embryo decreased by 0.65 MPa, concentration of crystalloid proteins decreased to 62% and concentrations of buffer soluble proteins and free amino acids increased by 22% and by 166%, respectively. Observations under an electron microscope demonstrated protein bodies in the embryo were mobilized. Inhibitor analysis indicated thiol protease was the dominant enzyme among endopiptidases to degrade the reserved proteins. A fragment of thiol protease was cloned from the primed seed embryos and it has high identities to those thiol proteases responsive to water stress. RNA get blot analysis showed a 1.5 kb thiol protease gene was up-regulated by SMP. Treatment with E64, a thiol protease inhibitor, negated SMP effects on germination performance, water potentials and protein profiles. Based on the experimental results, reserve protein mobilization induced by SMP in the embryo before radicle emergence might be one of the mechanisms to enhance germination in loblolly pine seeds.