926 resultados para WASTE-WATER IRRIGATION
Resumo:
Leather industries which promote hide stabilization by the conventional chrome-tanning process are a major source of pollution because of the resultant chromium-rich wastes. In this work, an extensive characterization of such a chromium-rich waste sludge is presented, regarding its chemical composition (XRF), crystalline phase contents (XRD), organic carbon content (TOC), thermal behavior by thermogravimetry (TG) and differential scanning calorimetry (DSC), as well as its stability under chemical attack (the concentration of important ions in the leachates being determined by capillary electrophoresis) and when submitted to temperatures as high as 1100 degrees C, in air. The material showed the tendency to produce some undesirable, and previously non-detected hexavalent chromium when exposed to high temperatures, but after washing off the soluble salts and the elimination of the organic matter by firing, the resultant material was succesfully tested as a ceramic pigment in a conventional glaze composition usually employed in the ceramic the industry. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Abstract: The Murray-Darling Basin comprises over 1 million km2; it lies within four states and one territory; and over 12, 800 GL of irrigation water is used to produce over 40% of the nation's gross value of agricultural production. This production is used by a diverse collection of some-times mutually exclusive commodities (e.g. pasture; stone fruit; grapes; cotton and field crops). The supply of water for irrigation is subject to climatic and policy uncertainty. Variable inflows mean that water property rights do not provide a guaranteed supply. With increasing public scrutiny and environmental issues facing irrigators, greater pressure is being placed on this finite resource. The uncertainty of the water supply, water quality (salinity), combined with where water is utilised, while attempting to maximising return for investment makes for an interesting research field. The utilisation and comparison of a GAMS and Excel based modelling approach has been used to ask: where should we allocate water?; amongst what commodities?; and how does this affect both the quantity of water and the quality of water along the Murray-Darling river system?
Resumo:
Leaf water potential (psi (l)) represents a good indicator of the water status of plants, and continuous monitoring of it can be useful in research and field applications such as scheduling irrigation. Changes in stem diameter (Sd) were used for monitoring psi (l) of pot-grown sorghum [Sorghum bicolor (L.) Moench] plants in a glasshouse. This method requires occasional calibration of S-d values against psi (l). Predicted values of psi (l), based on a single calibration show a good correlation with measured psi (l), values over a period of 13 d before and after the calibration. The correlation can further be improved with shorter time intervals.
Resumo:
A field experiment compared two rice (Oryza sativa L.) cropping systems: paddy or raised beds with continuous furrow irrigation; and trialled four cultivars: Starbonnet, Lemont, Amaroo and Ceysvoni, and one test line YRL39; that may vary in adaptation to growth on raised beds. The grain yield of rice ranged from 740 to 1250 g/m(2) and was slightly greater in paddy than on raised beds. Although there were early growth responses to fertilizer nitrogen on raised beds, the crop nitrogen content at maturity mostly exceeded 20 g/m(2) in both systems, so nitrogen was unlikely to have limited yield. Ceysvoni yielded best in both systems, a result of good post-anthesis growth and larger grain size, although its whole-grain mill-out percentage was poor relative to the other cultivars. Starbonnet and Lemont yielded poorly on raised beds, associated with too few tillers and too much leaf area. When grown on raised beds all cultivars experienced a delay in anthesis resulting in more tillers, leaf area and dry weight at anthesis, and probably a greater yield potential. The growth of rice after anthesis, however, was similar on raised beds and in paddy, so reductions in harvest index and grain size on raised beds were recorded. The data indicated that water supply was not a major limitation to rice growth on raised beds, but slower crop development was an issue that would affect the use of raised beds in a cropping system, especially in rice-growing areas where temperatures are too cool for optimal crop development. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Industry professionals of the near future will be supported by an IT infrastructure that enables them to complete a task by drawing on resources and people with expertise anywhere in the world, and access to knowledge through specific training programs that address the task requirements. The increasing uptake of new technologies enables information to reach a diverse population and to provide flexible learning environments 24 hours a day, 7 days a week. This paper examines one of the key areas where the World Wide Web will impact on the water and wastewater industries, namely technology transfer and training. The authors will present their experiences of developing online training courses for wastewater industry professionals over the last two years. The perspective is that of two people working at the coalface.
Resumo:
The aim of the present study was to evaluate water consumption, use efficiency and yield components of sunflower variety Embrapa 122 V/2000 cultivated in two types of soil (Fluvissol and Haplic Luvisol) subjected to increasing doses of cattle manure. The experiment was carried out in a greenhouse at Universidade Estadual da Paraíba. The experimental design was completely randomized in a factorial scheme. The irrigation was performed every other day, replacing the water absorbed by the plants. The water consumption and the use efficiency were evaluated, being the use efficiency determined by the ratio of the total dry mass of sunflower and the amount of water used to produce it in each treatment. Plants were harvested at 95 days after sowing when the following parameters were evaluated: number of seeds per plant, weight of seeds per plant, weight of 1000 seeds and the outer diameter of the capitulum (head). The results showed that the sunflower was positively affected by cattle manure application, increasing the production components and the water use efficiency, regardless of the type of soil. Excepting for the 1000 seeds weight and the water use efficiency, the type of soil affected significantly the water use, the number and weight of seeds per plant. The plants cultivated in Haplic Luvisol had a better performance.
Resumo:
Calcium-magnesium silicates improve the soil physicochemical properties and provide benefits to plant nutrition, since they are sources of silica, calcium and magnesium. The objective of this study was to evaluate the grain yield of irrigated corn fertilized with calcium-magnesium silicate. The experiment was carried out in a greenhouse in Campina Grande - PB, Brazil, using plastic pots containing 80 kg of soil. The treatments consisted of the combination of four irrigation depths, related to water replacement of 50, 75, 100 and 125% of the crop evapotranspiration, with fertilizer levels of 0, 82, 164 and 246 g of calcium-magnesium silicate, with three replications. The experimental design was in randomized blocks, with the irrigation depths distributed in bands while the silicon levels constituted the subplots. Corn yield was influenced by calcium-magnesium silicate and by irrigation depth, obtaining the greatest grain yield with the dose of 164 g pot-1 irrigated at the highest water level. The water-use efficiency of in corn production tended to decrease when the irrigation depth was increased. The best water-use efficiency was observed when the irrigation level was between 87 and 174 mm, and the dose of silicate was 164 g pot-1.
Resumo:
Nitrate losses from soil profiles by leaching should preferentially be monitored during high rainfall events and during irrigation when fertilizer nitrogen applications are elevated. Using a climatologic water balance, based on the models of Thornthwaite and Penman Monteith for potential evapotranspiration, drainage soil water fluxes below the root zone were estimated in a fertigated coffee crop. Soil solution extraction at the depth of 1 m allowed the calculation of nitrate leaching. The average nitrate concentration in soil solution for plots that received nitrogen by fertigation at a rate of 400 kg ha-1, was 5.42 mg L-1, surpassing the limit of the Brazilian legislation of 10.0 mg L-1, only during one month. For plots receiving 800 kg ha-1 of nitrogen, the average was 25.01 mg L-1, 2.5 times higher than the above-mentioned limit. This information indicates that nitrogen rates higher than 400 kg ha-1 are potentially polluting the ground water. Yearly nitrate amounts of leaching were 24.2 and 153.0 kg ha-1 for the nitrogen rates of 400 and 800 kg ha-1, respectively. The six times higher loss indicates a cost/benefit problem for coffee fertigations above 400 kg ha-1.
Resumo:
ABSTRACT The alternative technique of co-inoculation or mixed inoculation with symbiotic and non-symbiotic bacteria has been studied in leguminous plants. However, there are few field studies with common beans and under the influence of the amount of irrigated water. Thus, the objective of this study was to evaluate the efficiency of inoculation and co-inoculation of common beans with Rhizobium tropici and Azospirillum brasilense under two irrigation depths. The experiment was carried out in the winter of 2012 and 2013, in Selvíria, state of Mato Grosso do Sul. The experimental design was composed of randomized blocks in split-plot scheme with two irrigation depths in the plots (recommended for common beans and 75% of the recommended) and five forms of nitrogen (N) supply in the split-plots (control non-inoculated with 40 kg ha- 1 of N in topdressing, 80 kg ha- 1 of N in topdressing, A. brasilense inoculation with 40 kg ha-1 of N in topdressing, R. tropici inoculation with 40 kg ha-1 of N in topdressing, and co-inoculation of A. brasilense and R. tropici with 40 kg ha- 1 of N in topdressing) with four repetitions. Co-inoculation increased nodulation in the second year of cultivation. None of the evaluated treatments increased the grain yield in relation to non-inoculated control with 40 kg ha-1 of nitrogen in topdressing, which presented average yield of 2,200 kg ha-1. The use of 75% of the recommended irrigation depth provides similar grain yield to the recommended irrigation depth in common beans cropped in winter.
Resumo:
Most of the wastewater treatment systems in small rural communities of the Cova da Beira region (Portugal) consist of constructed wetlands (CW) with horizontal subsurface flow (HSSF). It is believed that those systems allow the compliance of discharge standards as well as the production of final effluents with suitability for reuse. Results obtained in a nine-month campaign in an HSSF bed pointed out that COD and TSS removal were lower than expected. A discrete sampling also showed that removal of TC, FC and HE was not enough to fulfill international irrigation goals. However, the bed had a very good response to variation of incoming nitrogen loads presenting high removal of nitrogen forms. A good correlation between mass load and mass removal rate was observed for BOD5, COD, TN, NH4-N, TP and TSS, which shows a satisfactory response of the bed to the variable incoming loads. The entrance of excessive loads of organic matter and solids contributed for the decrease of the effective volume for pollutant uptake and therefore, may have negatively influenced the treatment capability. Primary treatment should be improved in order to decrease the variation of incoming organic and solid loads and to improve the removal of COD, solids and pathogenic. The final effluent presented good physical-chemical quality to be reused for irrigation, which is the most likely application in the area.
Resumo:
Water covers over 70% of the Earth's surface, and is vital for all known forms of life. But only 3% of the Earth's water is fresh water, and less than 0.3% of all freshwater is in rivers, lakes, reservoirs and the atmosphere. However, rivers and lakes are an important part of fresh surface water, amounting to about 89%. In this Master Thesis dissertation, the focus is on three types of water bodies – rivers, lakes and reservoirs, and their water quality issues in Asian countries. The surface water quality in a region is largely determined both by the natural processes such as climate or geographic conditions, and the anthropogenic influences such as industrial and agricultural activities or land use conversion. The quality of the water can be affected by pollutants discharge from a specific point through a sewer pipe and also by extensive drainage from agriculture/urban areas and within basin. Hence, water pollutant sources can be divided into two categories: Point source pollution and Non-point source (NPS) pollution. Seasonal variations in precipitation and surface run-off have a strong effect on river discharge and the concentration of pollutants in water bodies. For example, in the rainy season, heavy and persistent rain wash off the ground, the runoff flow increases and may contain various kinds of pollutants and, eventually, enters the water bodies. In some cases, especially in confined water bodies, the quality may be positive related with rainfall in the wet season, because this confined type of fresh water systems allows high dilution of pollutants, decreasing their possible impacts. During the dry season, the quality of water is largely related to industrialization and urbanization pollution. The aim of this study is to identify the most common water quality problems in Asian countries and to enumerate and analyze the methodologies used for assessment of water quality conditions of both rivers and confined water bodies (lakes and reservoirs). Based on the evaluation of a sample of 57 papers, dated between 2000 and 2012, it was found that over the past decade, the water quality of rivers, lakes, and reservoirs in developing countries is being degraded. Water pollution and destruction of aquatic ecosystems have caused massive damage to the functions and integrity of water resources. The most widespread NPS in Asian countries and those which have the greatest spatial impacts are urban runoff and agriculture. Locally, mine waste runoff and rice paddy are serious NPS problems. The most relevant point pollution sources are the effluents from factories, sewage treatment plant, and public or household facilities. It was found that the most used methodology was unquestionably the monitoring activity, used in 49 of analyzed studies, accounting for 86%. Sometimes, data from historical databases were used as well. It can be seen that taking samples from the water body and then carry on laboratory work (chemical analyses) is important because it can give an understanding of the water quality. 6 papers (11%) used a method that combined monitoring data and modeling. 6 papers (11%) just applied a model to estimate the quality of water. Modeling is a useful resource when there is limited budget since some models are of free download and use. In particular, several of used models come from the U.S.A, but they have their own purposes and features, meaning that a careful application of the models to other countries and a critical discussion of the results are crucial. 5 papers (9%) focus on a method combining monitoring data and statistical analysis. When there is a huge data matrix, the researchers need an efficient way of interpretation of the information which is provided by statistics. 3 papers (5%) used a method combining monitoring data, statistical analysis and modeling. These different methods are all valuable to evaluate the water quality. It was also found that the evaluation of water quality was made as well by using other types of sampling different than water itself, and they also provide useful information to understand the condition of the water body. These additional monitoring activities are: Air sampling, sediment sampling, phytoplankton sampling and aquatic animal tissues sampling. Despite considerable progress in developing and applying control regulations to point and NPS pollution, the pollution status of rivers, lakes, and reservoirs in Asian countries is not improving. In fact, this reflects the slow pace of investment in new infrastructure for pollution control and growing population pressures. Water laws or regulations and public involvement in enforcement can play a constructive and indispensable role in environmental protection. In the near future, in order to protect water from further contamination, rapid action is highly needed to control the various kinds of effluents in one region. Environmental remediation and treatment of industrial effluent and municipal wastewaters is essential. It is also important to prevent the direct input of agricultural and mine site runoff. Finally, stricter environmental regulation for water quality is required to support protection and management strategies. It would have been possible to get further information based in the 57 sample of papers. For instance, it would have been interesting to compare the level of concentrations of some pollutants in the diferente Asian countries. However the limit of three months duration for this study prevented further work to take place. In spite of this, the study objectives were achieved: the work provided an overview of the most relevant water quality problems in rivers, lakes and reservoirs in Asian countries, and also listed and analyzed the most common methodologies.
Oxidative Leaching of metals from electronic waste with solutions based on quaternary ammonium salts
Resumo:
The treatment of electric and electronic waste (WEEE) is a problem which receives ever more attention. An inadequate treatment results in harmful products ending up in the environment. This project intends to investigate the possibilities of an alternative route for recycling of metals from printed circuit boards (PCBs) obtained from rejected computers. The process is based on aqueous solutions composed of an etchant, either 0.2 M CuCl2.2H2O or 0.2 M FeCl3.6H2O, and a quaternary ammonium salt (quat) such as choline chloride or chlormequat. These solutions are reminiscent of deep eutectic solvents (DES) based on quats. DES are quite similar to ionic liquids (ILs) and are used as well as alternative solvents with a great diversity of physical properties, making them attractive for replacement of hazardous, volatile solvents (e.g. VOCs). A remarkable difference between genuine DES and ILs with the solutions used in this project is the addition of rather large quantities of water. It is shown the presence of water has a lot of advantages on the leaching of metals, while the properties typical for DES still remain. The oxidizing capacities of Cu(II) stem from the existence of a stable Cu(I) component in quat based DES and thus the leaching stems from the activity of the Cu(II)/Cu(I) redox couple. The advantage of Fe(III) in combination with DES is the fact that the Fe(III)/Fe(II) redox couple becomes reversible, which is not true in pure water. This opens perspectives for regeneration of the etching solution. In this project the leaching of copper was studied as a function of gradual increasing water content from 0 - 100w% with the same concentration of copper chloride or iron(III) chloride at room temperature and 80ºC. The solutions were also tested on real PCBs. At room temperature a maximum leaching effect for copper was obtained with 30w% choline chloride with 0.2 M CuCl2.2H2O. The leaching effect is still stronger at 80°C, b ut of course these solutions are more energy consuming. For aluminium, tin, zinc and lead, the leaching was faster at 80ºC. Iron and nickel dissolved easily at room temperature. The solutions were not able to dissolve gold, silver, rhodium and platinum.
Resumo:
The construction industry keeps on demanding huge quantities of natural resources, mainly minerals for mortars and concrete production. The depletion of many quarries and environmental concerns about reducing the dumping of construction and demolition waste in quarries have led to an increase in the procuring and use of recycled aggregates from this type of waste. If they are to be incorporated in concrete and mortars it is essential to know their properties to guarantee the adequate performance of the end products, in both mechanical and durability-related terms. Existing regulated tests were developed for natural aggregates, however, and several problems arise when they are applied to recycled aggregates, especially fine recycled aggregates (FRA). This paper describes the main problems encountered with these tests and proposes an alternative method to determine the density and water absorption of FRA that removes them. The use of sodium hexametaphosphate solutions in the water absorption test has proven to improve its efficiency, minimizing cohesion between particles and helping to release entrained air.
Resumo:
In this work three natural waste materials containing chitin were used as adsorbents for textile dyestuffs, namely the Anodonta (Anodonta cygnea) shell, the Sepia (Sepia officinalis) and the Squid (Loligo vulgaris) pens. The selected dyestuffs were the Cibacron green T3G-E (CI reactive green 12), and the Solophenyl green BLE 155% (CI direct green 26), both from CIBA, commonly used in cellulosic fibres dyeing, the most used fibres in the textile industry. Batch equilibrium studies showed that the materials’ adsorption capacities increase after a simple and inexpensive chemical treatment, which increases their porosity and chitin relative content. Kinetic studies suggested the existence of a high internal resistance in both systems. Fixed bed column experiments performed showed an improvement in adsorbents’ behaviour after chemical treatment. However, in the column experiments, the biodegradation was the main mechanism of dyestuff removal, allowing the materials’ bioregeneration. The adsorption was strongly reduced by the pore clogging effect of the biomass. The deproteinised Squid pen (grain size 0.500–1.41 mm) is the adsorbent with highest adsorption capacity (0.27 and 0.037 g/g, respectively, for the reactive and direct dyestuffs, at 20ºC), followed by the demineralised Sepia pen and Anodonta shell, behaving like pure chitin in all experiments, but showing inferior performances than the granular activated carbon tested in the column experiments.
Resumo:
The aim of this paper is to evaluate the influence of the crushing process used to obtain recycled concrete aggregates on the performance of concrete made with those aggregates. Two crushing methods were considered: primary crushing, using a jaw crusher, and primary plus secondary crushing (PSC), using a jaw crusher followed by a hammer mill. Besides natural aggregates (NA), these two processes were also used to crush three types of concrete made in laboratory (L20, L45 e L65) and three more others from the precast industry (P20, P45 e P65). The coarse natural aggregates were totally replaced by coarse recycled concrete aggregates. The recycled aggregates concrete mixes were compared with reference concrete mixes made using only NA, and the following properties related to the mechanical and durability performance were tested: compressive strength; splitting tensile strength; modulus of elasticity; carbonation resistance; chloride penetration resistance; water absorption by capillarity; water absorption by immersion; and shrinkage. The results show that the PSC process leads to better performances, especially in the durability properties. © 2014 RILEM