986 resultados para Voice Digital Processing
Resumo:
Objective To determine the accuracy of the whispered voice test in detecting hearing impairment in adults and children. Design Systematic review of studies of test accuracy. Data sources Medline, Embase, Science Citation Index, unpublished theses, manual searching of bibliographies of known primary and review articles, and contact with authors. Study selection Two reviewers independently selected and extracted data on study characteristics, quality, and accuracy of studies. Studies were included if they had cross sectional designs, at least one of the index tests was the whispered voice test, and the reference test (audiometry) was performed on at least 80% of the participants. Data extraction Data were used to form 2x2 contingency tables with hearing impairment by audiometry as the reference standard. Data synthesis The eight studies that were found used six different techniques. The sensitivity in the four adult studies was 90% or 100% and the specificity was 70% to 87%. The sensitivity in the four childhood studies ranged from 80% to 96% and specificity ranged from 90% to 98%. Conclusion The whispered voice test is a simple and accurate test for detecting hearing impairment. There is some concern regarding the lower sensitivity in children and the overall reproducibility of the test, particularly in primary care settings. Further studies should be conducted in primary care settings to explore the influence of components of the testing procedure to optimise test sensitivity and to promote standardisation of the testing procedure.
Resumo:
In this study we demonstrate a new in-fermenter chemical extraction procedure that degrades the cell wall of Escherichia coli and releases inclusion bodies (IBs) into the fermentation medium. We then prove that cross-flow microfiltration can be used to remove 91% of soluble contaminants from the released IBs. The extraction protocol, based on a combination of Triton X-100, EDTA, and intracellular T7 lysozyme, effectively released most of the intracellular soluble content without solubilising the IBs. Cross-flow microfiltration using a 0.2 mum ceramic membrane successfully recovered the granulocyte macrophagecolony stimulating factor (GM-CSF) IBs with removal of 91% of the soluble contaminants and virtually no loss of IBs to the permeate. The filtration efficiency, in terms of both flux and transmission, was significantly enhanced by infermenter Benzonase(R) digestion of nucleic acids following chemical extraction. Both the extraction and filtration methods exerted their efficacy directly on a crude fermentation broth, eliminating the need for cell recovery and re-suspension in buffer. The processes demonstrated here can all be performed using just a fermenter and a single cross-flow filtration unit, demonstrating a high level of process intensification. Furthermore, there is considerable scope to also use the microfiltration system to subsequently solubilise the IBs, to separate the denatured protein from cell debris, and to refold the protein using diafiltration. In this way refolded protein can potentially be obtained, in a relatively pure state, using only two unit operations. (C) 2004 Wiley Periodicals Inc.
Resumo:
Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class 1 binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify H LA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Techniques applying digital images increasingly have been used in biology, medicine, physics, and other research areas. The image coordinates can represent light intensities values to be detected by a CCD. Based on this concept, a photometric system composed of a LED source and a digital camera as a detector was used for optical density measurements. Standards for permanganate, glucose, and protein solutions were detemined by colorimetric methods using our device. Samples of protein of Pasteurella mutocida bacteria membrane and, also, fractions of rabbit kidney membrane, rich in Na, K-ATPase, with unknown concentrations were dosed through the Hartree method using our photometric system.
Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum
Resumo:
This work reports on the effect of initial substrate concentration on COD consumption, pH, and H(2) production during cassava processing wastewater fermentation by Clostridium acetobutylicum ATCC 824. Five initial COD wastewater concentrations, namely 5.0, 7.5, 10.7, 15.0, and 30.0 g/L, were used. The results showed that higher substrate concentrations (30.0 and 15.0 COD/L) led to lower H(2) yield as well as less efficient substrate conversion into H(2). On the other hand, initial COD concentrations of 10.7, 7.5 and 5 g/L furnished 1.34, 1.2 and 2.41 mol H(2)/mol glucose, with efficiency of glucose conversion into H(2) of 34, 30, and 60% (mol/mol), respectively. These results demonstrate that cassava processing wastewater, a highly polluting effluent, can be successfully employed as substrate for H(2) production by C acetobutylicum at lower COD concentrations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Ohman and colleagues provided evidence for preferential processing of pictures depicting fear-relevant animals by showing that pictures of snakes and spiders are found faster among pictures of fiowers and mushrooms than vice versa and that the speed of detecting fear-relevant animals was not affected by set size whereas the speed of detecting fiowers/mushrooms was. Experiment 1 replicated this finding. Experiment 2, however, found similar search advantages when pictures of cats and horses or of wolves and big cats were to be found among pictures of flowers and mushrooms. Moreover, Experiment 3, in a within subject comparison, failed to find faster identification of snakes and spiders than of cats and horses among flowers and mushrooms. The present findings seem to indicate that previous reports of preferential processing of pictures of snakes and spiders in a visual search task may reflect a processing advantage for animal pictures in general rather than fear-relevance.
Resumo:
Fear-relevant stimuli, such as snakes, spiders and heights, preferentially capture attention as compared to nonfear-relevant stimuli. This is said to reflect an encapsulated mechanism whereby attention is captured by the simple perceptual features of stimuli that have evolutionary significance. Research, using pictures of snakes and spiders, has found some support for this account; however, participants may have had prior fear of snakes and spiders that influenced results. The current research compared responses of snake and spider experts who had little fear of snakes and spiders, and control participants across a series of affective priming and visual search tasks. Experts discriminated between dangerous and nondangerous snakes and spiders, and expert responses to pictures of nondangerous snakes and spiders differed from those of control participants. The current results dispute that stimulus fear relevance is based purely on perceptual features, and provides support for the role of learning and experience.
Resumo:
Introduction: Prune belly syndrome (PBS) presents with large-capacity bladders, high compliance and post-void residual volumes. Operative and conservative treatments are controversial. When histologically compared to normal bladder, bladder outlet obstruction results in an up- or down-regulation of adrenoceptors. Our goal was to study the immunoexpression of adrenoceptors in detrusor from patients with PBS. Materials and methods: Bladder domes from PBS patients (n = 14) were studied (PBG). For normal controls, bladder specimens were obtained at adult surgery (n = 13) (CG1) and at child autopsy (n = 5) (CG2). Staining was performed using antibodies to alpha 1a, alpha 1b, alpha 1d and beta 3 adrenoceptors. Five to 10 images were captured on an optic microscope with a digital camera and analysed with Photoshop(R). The immunocyhistochemical index with arbitrary units was calculated and compared. Results: Mean age was 1.28, 64 and 1.41 years for PBG, CG1 and CG2, respectively. The immunohistochemical index with arbitrary units of alpha 1a receptors was 0.06 in PBG, 0.16 in CG1 and 0.14 in CG2 (p = 0.008); of alpha 1b 0.06, 0.06 and 0.07 (p = 0.781); and of alpha 1d 0.04, 0.04 and 0.05 (p = 0.618). Regarding beta 3 the respective values were 0.07, 0.14 and 0.10 (p = 0.378). Conclusion: Our results show a decrease in ala-adrenoceptor immunostaining intensity in detrusor from children with PBS. Further in vitro studies are needed to determine whether these observations are physiologically significant. (C) 2009 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Resumo:
Three experiments examined the hypothesis that people show consistency in motivated social cognitive processing across self-serving domains. Consistent with this hypothesis, Experiment 1 revealed that people who rated a task at which they succeeded as more important than a task at which they failed also cheated on a series of math problems, but only when they could rationalize their cheating as unintentional. Experiment 2 replicated this finding and demonstrated that a self-report measure of self-deception did not predict this rationalized cheating. Experiment 3 replicated Experiments 1 and 2 and ruled out several alternative explanations. These experiments suggest that people who show motivated processing in ego-protective domains also show motivated processing in extrinsic domains. These experiments also introduce a new measurement procedure for differentiating between intentional versus rationalized cheating.
Resumo:
Objective: Individuals with autism spectrum disorders typically have normal visuospatial abilities but impaired executive functioning, particularly in abilities related to working memory and attention. The aim of this study was to elucidate the functioning of frontoparietal networks underlying spatial working memory processes during mental rotation in persons with autism spectrum disorders. Method: Seven adolescent males with normal IQ with an autism spectrum disorder and nine age- and IQ-matched male comparison subjects underwent functional magnetic resonance imaging scans while performing a mental rotation task. Results: The autism spectrum disorders group showed less activation in lateral and medial premotor cortex, dorsolateral prefrontal cortex, anterior cingulate gyrus, and caudate nucleus. Conclusions: The finding of less activation in prefrontal regions but not in parietal regions supports a model of dysfunction of frontostriatal networks in autism spectrum disorders.
Resumo:
Heterologous genes encoding proproteins, including proinsulin, generally produce mature protein when expressed in endocrine cells while unprocessed or partially processed protein is produced in non-endocrine cells. Proproteins, which are normally processed in the regulated pathway restricted to endocrine cells, do not always contain the recognition sequence for cleavage by furin, the endoprotease specific to the constitutive pathway, the principal protein processing pathway in non-endocrine cells. Human proinsulin consists of B-Chain-C-peptide-A-Chain and cleavage at the B/C and C/A junctions is required for processing. The B/C, but not the C/A junction, is recognised and cleaved in the constitutive pathway. We expressed a human proinsulin and a mutated proinsulin gene with an engineered furin recognition sequence at the C/A junction and compared the processing efficiency of the mutant and native proinsulin in Chinese Hamster Ovary cells. The processing efficiency of the mutant proinsulin was 56% relative to 0.7% for native proinsulin. However, despite similar levels of mRNA being expressed in both cell lines, the absolute levels of immunoreactive insulin, normalized against mRNA levels, were 18-fold lower in the mutant proinsulin-expressing cells. As a result, there was only a marginal increase in absolute levels of insulin produced by these cells. This unexpected finding may result from preferential degradation of insulin in non-endocrine cells which lack the protection offered by the secretory granules found in endocrine cells.