958 resultados para Visual form processing
Resumo:
The work presented in this thesis is divided into two distinct sections. In the first, the functional neuroimaging technique of Magnetoencephalography (MEG) is described and a new technique is introduced for accurate combination of MEG and MRI co-ordinate systems. In the second part of this thesis, MEG and the analysis technique of SAM are used to investigate responses of the visual system in the context of functional specialisation within the visual cortex. In chapter one, the sources of MEG signals are described, followed by a brief description of the necessary instrumentation for accurate MEG recordings. This chapter is concluded by introducing the forward and inverse problems of MEG, techniques to solve the inverse problem, and a comparison of MEG with other neuroimaging techniques. Chapter two provides an important contribution to the field of research with MEG. Firstly, it is described how MEG and MRI co-ordinate systems are combined for localisation and visualisation of activated brain regions. A previously used co-registration methods is then described, and a new technique is introduced. In a series of experiments, it is demonstrated that using fixed fiducial points provides a considerable improvement in the accuracy and reliability of co-registration. Chapter three introduces the visual system starting from the retina and ending with the higher visual rates. The functions of the magnocellular and the parvocellular pathways are described and it is shown how the parallel visual pathways remain segregated throughout the visual system. The structural and functional organisation of the visual cortex is then described. Chapter four presents strong evidence in favour of the link between conscious experience and synchronised brain activity. The spatiotemporal responses of the visual cortex are measured in response to specific gratings. It is shown that stimuli that induce visual discomfort and visual illusions share their physical properties with those that induce highly synchronised gamma frequency oscillations in the primary visual cortex. Finally chapter five is concerned with localization of colour in the visual cortex. In this first ever use of Synthetic Aperture Magnetometry to investigate colour processing in the visual cortex, it is shown that in response to isoluminant chromatic gratings, the highest magnitude of cortical activity arise from area V2.
Resumo:
The recording of visual acuity using the Snellen letter chart is only a limited measure of the visual performance of an eye wearing a refractive aid. Qualitative in addition to quantitative information is required to establish such a parameter: spatial, temporal and photometric aspects must all be incorporated into the test procedure. The literature relating to the correction of ametropia by refractive aids was reviewed. Selected aspects of a comparison between the correction provided by spectacles and contact lenses were considered. Special attention was directed to soft hydrophilic contact lenses. Despite technological advances which have produced physiologically acceptable soft lenses, there still remain associated with this recent form of refractive aid unpredictable visual factors. Several techniques for vision assessment were described, and previous studies of visual performance were discussed. To facilitate the investigation of visual performance in a clinical environment, a new semi-automated system was described: this utilized the presentation of broken ring test stimuli on a television screen. The research project comprised two stages. Initial work was concerned with the validation of the television system, including the optimization of its several operational variables. The second phase involved the utilization of the system in an investigation of visual performance aspects of the first month of regular daily soft contact lens wear by experimentally-naive subjects. On the basis of the results of this work an ‘homoeostatic’ model has been proposed to represent the strategy which an observer adopts in order to optimize his visual performance with soft contact lenses.
Resumo:
The Octopus Automated Perimeter was validated in a comparative study and found to offer many advantages in the assessment of the visual field. The visual evoked potential was investigated in an extensive study using a variety of stimulus parameters to simulate hemianopia and central visual field defects. The scalp topography was recorded topographically and a technique to compute the source derivation of the scalp potential was developed. This enabled clarification of the expected scalp distribution to half field stimulation using different electrode montages. The visual evoked potential following full field stimulation was found to be asymmetrical around the midline with a bias over the left occiput particularly when the foveal polar projections of the occipital cortex were preferentially stimulated. The half field response reflected the distribution asymmetry. Masking of the central 3° resulted in a response which was approximately symmetrical around the midline but there was no evidence of the PNP-complex. A method for visual field quantification was developed based on the neural representation of visual space (Drasdo and Peaston 1982) in an attempt to relate visual field depravation with the resultant visual evoked potentials. There was no form of simple, diffuse summation between the scalp potential and the cortical generators. It was, however, possible to quantify the degree of scalp potential attenuation for M-scaled full field stimuli. The results obtained from patients exhibiting pre-chiasmal lesions suggested that the PNP-complex is not scotomatous in nature but confirmed that it is most likely to be related to specific diseases (Harding and Crews 1982). There was a strong correlation between the percentage information loss of the visual field and the diagnostic value of the visual evoked potential in patients exhibiting chiasmal lesions.
Resumo:
This thesis first considers the calibration and signal processing requirements of a neuromagnetometer for the measurement of human visual function. Gradiometer calibration using straight wire grids is examined and optimal grid configurations determined, given realistic constructional tolerances. Simulations show that for gradiometer balance of 1:104 and wire spacing error of 0.25mm the achievable calibration accuracy of gain is 0.3%, of position is 0.3mm and of orientation is 0.6°. Practical results with a 19-channel 2nd-order gradiometer based system exceed this performance. The real-time application of adaptive reference noise cancellation filtering to running-average evoked response data is examined. In the steady state, the filter can be assumed to be driven by a non-stationary step input arising at epoch boundaries. Based on empirical measures of this driving step an optimal progression for the filter time constant is proposed which improves upon fixed time constant filter performance. The incorporation of the time-derivatives of the reference channels was found to improve the performance of the adaptive filtering algorithm by 15-20% for unaveraged data, falling to 5% with averaging. The thesis concludes with a neuromagnetic investigation of evoked cortical responses to chromatic and luminance grating stimuli. The global magnetic field power of evoked responses to the onset of sinusoidal gratings was shown to have distinct chromatic and luminance sensitive components. Analysis of the results, using a single equivalent current dipole model, shows that these components arise from activity within two distinct cortical locations. Co-registration of the resulting current source localisations with MRI shows a chromatically responsive area lying along the midline within the calcarine fissure, possibly extending onto the lingual and cuneal gyri. It is postulated that this area is the human homologue of the primate cortical area V4.
Resumo:
The study utilized the advanced technology provided by automated perimeters to investigate the hypothesis that patients with retinitis pigmentosa behave atypically over the dynamic range and to concurrently determine the influence of extraneous factors on the format of the normal perimetric sensitivity profile. The perimetric processing of some patients with retinitis pigmentosa was considered to be abnormal in either the temporal and/or the spatial domain. The standard size III stimulus saturated the central regions and was thus ineffective in detecting early depressions in sensitivity in these areas. When stimulus size was scaled in inverse proportion to the square root of ganglion cell receptive field density (M-scaled), isosensitive profiles did not result, although cortical representation was theoretically equivalent across the visual field. It was conjectured that this was due to variations in the ganglion cell characteristics with increasing peripheral angle, most notably spatial summation. It was concluded that the development of perimetric routines incorporating stimulus sizes adjusted in proportion to the coverage factor of retinal ganglion cells would enhance the diagnostic capacity of perimetry. Good general and local correspondence was found between perimetric sensitivity and the available retinal cell counts. Intraocular light scatter arising both from simulations and media opacities depressed perimetric sensitivity. Attenuation was greater centrally for the smaller LED stimuli, whereas the reverse was true for the larger projected stimuli. Prior perimetric experience and pupil size also demonstrated eccentricity-dependent effect on sensitivity. Practice improved perimetric sensitivity for projected stimuli at eccentricities greater than or equal to 30o; particularly in the superior region. Increase in pupil size for LED stimuli enhanced sensitivity at eccentricities greater than 10o. Conversely, microfluctuation in the accommodative response during perimetric examination and the correction of peripheral refractive error had no significant influence on perimetric sensitivity.
Resumo:
The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function.
Resumo:
Parkinson’s disease (PD) is a common disorder of middle-aged and elderly people in which degeneration of the extrapyramidal motor system causes significant movement problems. In some patients, however, there are additional disturbances in sensory systems including loss of the sense of smell and auditory and/or visual problems. This article is a general overview of the visual problems likely to be encountered in PD. Changes in vision in PD may result from alterations in visual acuity, contrast sensitivity, colour discrimination, pupil reactivity, eye movements, motion perception, visual field sensitivity and visual processing speeds. Slower visual processing speeds can also lead to a decline in visual perception especially for rapidly changing visual stimuli. In addition, there may be disturbances of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations. Some of the treatments used in PD may also have adverse ocular reactions. The pattern electroretinogram (PERG) is useful in evaluating retinal dopamine mechanisms and in monitoring dopamine therapies in PD. If visual problems are present, they can have an important effect on the quality of life of the patient, which can be improved by accurate diagnosis and where possible, correction of such defects.
Resumo:
The present thesis tested the hypothesis of Stanovich, Siegel, & Gottardo (1997) that surface dyslexia is the result of a milder phonological deficit than that seen in phonological dyslexia coupled with reduced reading experience. We found that a group of adults with surface dyslexia showed a phonological deficit that was commensurate with that shown by a group of adults with phonological dyslexia (matched for chronological age and verbal and non-verbal IQ) and normal reading experience. We also showed that surface dyslexia cannot be accounted for by a semantic impairment or a deficit in the verbal learning and recall of lexical-semantic information (such as meaningful words), as both dyslexic subgroups performed the same. This study has replicated the results of our published study that surface dyslexia is not the consequence of a mild retardation or reduced learning opportunities but a separate impairment linked to a deficit in written lexical learning, an ability needed to create novel lexical representations from a series of unrelated visual units, which is independent from the phonological deficit (Romani, Di Betta, Tsouknida & Olson, 2008). This thesis also provided evidence that a selective nonword reading deficit in developmental dyslexia persists beyond poor phonology. This was shown by finding a nonword reading deficit even in the presence of normal regularity effects in the dyslexics (when compared to both reading and spelling-age matched controls). A nonword reading deficit was also found in the surface dyslexics. Crucially, this deficit was as strong as in the phonological dyslexics despite better functioning of the sublexical route for the former. These results suggest that a nonword reading deficit cannot be solely explained by a phonological impairment. We, thus, suggested that nonword reading should also involve another ability relating to the processing of novel visual orthographic strings, which we called 'orthographic coding'. We then investigated the ability to process series of independent units within multi-element visual arrays and its relationship with reading and spelling problems. We identified a deficit in encoding the order of visual sequences (involving both linguistic and nonlinguistic information) which was significantly associated with word and nonword processing. More importantly, we revealed significant contributions to orthographic skills in both dyslexic and control individuals, even after age, performance IQ and phonological skills were controlled. These results suggest that spelling and reading do not only tap phonological skills but also order encoding skills.
Resumo:
Alzheimer’s disease (AD) is an important neurodegenerative disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of ?-amyloid (A?) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary responses to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances in complex visual tasks such as reading, visuospatial function, and in the naming and identification of objects. In addition, pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. To better understand degeneration of the visual cortex in AD, the laminar distribution of the SP and NFT was studied in visual areas V1 and V2 in 18 cases of AD which varied in disease onset and duration. In area V1, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In V2, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. The densities of SP in laminae I of V1 and NFT in lamina IV of V2 were negatively correlated with patient age. No significant correlations were observed in any cortical lamina between the density of NFT and disease onset or duration. However, in area V2, the densities of SP in lamina II and lamina V were negatively correlated with disease duration and disease onset respectively. In addition, there were several positive correlations between the densities of SP and NFT in V1 with those in area V2. The data suggest: (1) NFT pathology is greater in area V2 than V1, (2) laminae II/III of V1 and V2 are most affected by the pathology, (3) the formation of SP and NFT in V1 and V2 are interconnected, and (4) the pathology may spread between visual areas via the feed-forward short cortico-cortical connections.
Resumo:
Huge advertising budgets are invested by firms to reach and convince potential consumers to buy their products. To optimize these investments, it is fundamental not only to ensure that appropriate consumers will be reached, but also that they will be in appropriate reception conditions. Marketing research has focused on the way consumers react to advertising, as well as on some individual and contextual factors that could mediate or moderate the ad impact on consumers (e.g. motivation and ability to process information or attitudes toward advertising). Nevertheless, a factor that potentially influences consumers’ advertising reactions has not yet been studied in marketing research: fatigue. Fatigue can yet impact key variables of advertising processing, such as cognitive resources availability (Lieury 2004). Fatigue is felt when the body warns to stop an activity (or inactivity) to have some rest, allowing the individual to compensate for fatigue effects. Dittner et al. (2004) defines it as “the state of weariness following a period of exertion, mental or physical, characterized by a decreased capacity for work and reduced efficiency to respond to stimuli.’’ It signals that resources will lack if we continue with the ongoing activity. According to Schmidtke (1969), fatigue leads to troubles in information reception, in perception, in coordination, in attention getting, in concentration and in thinking. In addition, for Markle (1984) fatigue generates a decrease in memory, and in communication ability, whereas it increases time reaction, and number of errors. Thus, fatigue may have large effects on advertising processing. We suggest that fatigue determines the level of available resources. Some research about consumer responses to advertising claim that complexity is a fundamental element to take into consideration. Complexity determines the cognitive efforts the consumer must provide to understand the message (Putrevu et al. 2004). Thus, we suggest that complexity determines the level of required resources. To study this complex question about need and provision of cognitive resources, we draw upon Resource Matching Theory. Anand and Sternthal (1989, 1990) are the first to state the Resource Matching principle, saying that an ad is most persuasive when the resources required to process it match the resources the viewer is willing and able to provide. They show that when the required resources exceed those available, the message is not entirely processed by the consumer. And when there are too many available resources comparing to those required, the viewer elaborates critical or unrelated thoughts. According to the Resource Matching theory, the level of resource demanded by an ad can be high or low, and is mostly determined by the ad’s layout (Peracchio and Myers-Levy, 1997). We manipulate the level of required resources using three levels of ad complexity (low – high – extremely high). On the other side, the resource availability of an ad viewer is determined by lots of contextual and individual variables. We manipulate the level of available resources using two levels of fatigue (low – high). Tired viewers want to limit the processing effort to minimal resource requirements by making heuristics, forming overall impression at first glance. It will be easier for them to decode the message when ads are very simple. On the contrary, the most effective ads for viewers who are not tired are complex enough to draw their attention and fully use their resources. They will use more analytical strategies, looking at the details of the ad. However, if ads are too complex, they will be too difficult to understand. The viewer will be discouraged to process information and will overlook the ad. The objective of our research is to study fatigue as a moderating variable of advertising information processing. We run two experimental studies to assess the effect of fatigue on visual strategies, comprehension, persuasion and memorization. In study 1, thirty-five undergraduate students enrolled in a marketing research course participated in the experiment. The experimental design is 2 (tiredness level: between subjects) x 3 (ad complexity level: within subjects). Participants were randomly assigned a schedule time (morning: 8-10 am or evening: 10-12 pm) to perform the experiment. We chose to test subjects at various moments of the day to obtain maximum variance in their fatigue level. We use Morningness / Eveningness tendency of participants (Horne & Ostberg, 1976) as a control variable. We assess fatigue level using subjective measures - questionnaire with fatigue scales - and objective measures - reaction time and number of errors. Regarding complexity levels, we have designed our own ads in order to keep aspects other than complexity equal. We ran a pretest using the Resource Demands scale (Keller and Bloch 1997) and by rating them on complexity like Morrison and Dainoff (1972) to check for our complexity manipulation. We found three significantly different levels. After having completed the fatigue scales, participants are asked to view the ads on a screen, while their eye movements are recorded by the eye-tracker. Eye-tracking allows us to find out patterns of visual attention (Pieters and Warlop 1999). We are then able to infer specific respondents’ visual strategies according to their level of fatigue. Comprehension is assessed with a comprehension test. We collect measures of attitude change for persuasion and measures of recall and recognition at various points of time for memorization. Once the effect of fatigue will be determined across the student population, it is interesting to account for individual differences in fatigue severity and perception. Therefore, we run study 2, which is similar to the previous one except for the design: time of day is now within-subjects and complexity becomes between-subjects
Resumo:
The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function. © 2012 Nova Science Publishers, Inc. All rights reserved.
Resumo:
Dementia with Lewy bodies ('Lewy body dementia' or 'diffuse Lewy body disease') (DLB) is the second most common form of dementia to affect elderly people, after Alzheimer's disease. A combination of the clinical symptoms of Alzheimer's disease and Parkinson's disease is present in DLB and the disorder is classified as a 'parkinsonian syndrome', a group of diseases which also includes Parkinson's disease, progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy. Characteristics of DLB are fluctuating cognitive ability with pronounced variations in attention and alertness, recurrent visual hallucinations and spontaneous motor features, including akinesia, rigidity and tremor. In addition, DLB patients may exhibit visual signs and symptoms, including defects in eye movement, pupillary function and complex visual functions. Visual symptoms may aid the differential diagnoses of parkinsonian syndromes. Hence, the presence of visual hallucinations supports a diagnosis of Parkinson's disease or DLB rather than progressive supranuclear palsy. DLB and Parkinson's disease may exhibit similar impairments on a variety of saccadic and visual perception tasks (visual discrimination, space-motion and object-form recognition). Nevertheless, deficits in orientation, trail-making and reading the names of colours are often significantly greater in DLB than in Parkinson's disease. As primary eye-care practitioners, optometrists should be able to work with patients with DLB and their carers to manage their visual welfare.
Resumo:
Motor timing tasks have been employed in studies of neurodevelopmental disorders such as developmental dyslexia and ADHD, where they provide an index of temporal processing ability. Investigations of these disorders have used different stimulus parameters within the motor timing tasks which are likely to affect performance measures. Here we assessed the effect of auditory and visual pacing stimuli on synchronised motor timing performance and its relationship with cognitive and behavioural predictors that are commonly used in the diagnosis of these highly prevalent developmental disorders. Twenty- one children (mean age 9.6 years) completed a finger tapping task in two stimulus conditions, together with additional psychometric measures. As anticipated, synchronisation to the beat (ISI 329 ms) was less accurate in the visually paced condition. Decomposition of timing variance indicated that this effect resulted from differences in the way that visual and auditory paced tasks are processed by central timekeeping and associated peripheral implementation systems. The ability to utilise an efficient processing strategy on the visual task correlated with both reading and sustained attention skills. Dissociations between these patterns of relationship across task modality suggest that not all timing tasks are equivalent.
Resumo:
This review describes the oculo-visual problems likely to be encountered in Parkinson's disease (PD) with special reference to three questions: (1) are there visual symptoms characteristic of the prodromal phase of PD, (2) is PD dementia associated with specific visual changes, and (3) can visual symptoms help in the differential diagnosis of the parkinsonian syndromes, viz. PD, progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD)? Oculo-visual dysfunction in PD can involve visual acuity, dynamic contrast sensitivity, colour discrimination, pupil reactivity, eye movement, motion perception, and visual processing speeds. In addition, disturbance of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations may be present. Prodromal features of PD may include autonomic system dysfunction potentially affecting pupil reactivity, abnormal colour vision, abnormal stereopsis associated with postural instability, defects in smooth pursuit eye movements, and deficits in visuo-motor adaptation, especially when accompanied by idiopathic rapid eye movement (REM) sleep behaviour disorder. PD dementia is associated with the exacerbation of many oculo-visual problems but those involving eye movements, visuo-spatial function, and visual hallucinations are most characteristic. Useful diagnostic features in differentiating the parkinsonian symptoms are the presence of visual hallucinations, visuo-spatial problems, and variation in saccadic eye movement dysfunction.
Resumo:
The processing conducted by the visual system requires the combination of signals that are detected at different locations in the visual field. The processes by which these signals are combined are explored here using psychophysical experiments and computer modelling. Most of the work presented in this thesis is concerned with the summation of contrast over space at detection threshold. Previous investigations of this sort have been confounded by the inhomogeneity in contrast sensitivity across the visual field. Experiments performed in this thesis find that the decline in log contrast sensitivity with eccentricity is bilinear, with an initial steep fall-off followed by a shallower decline. This decline is scale-invariant for spatial frequencies of 0.7 to 4 c/deg. A detailed map of the inhomogeneity is developed, and applied to area summation experiments both by incorporating it into models of the visual system and by using it to compensate stimuli in order to factor out the effects of the inhomogeneity. The results of these area summation experiments show that the summation of contrast over area is spatially extensive (occurring over 33 stimulus carrier cycles), and that summation behaviour is the same in the fovea, parafovea, and periphery. Summation occurs according to a fourth-root summation rule, consistent with a “noisy energy” model. This work is extended to investigate the visual deficit in amblyopia, finding that area summation is normal in amblyopic observers. Finally, the methods used to study the summation of threshold contrast over area are adapted to investigate the integration of coherent orientation signals in a texture. The results of this study are described by a two-stage model, with a mandatory local combination stage followed by flexible global pooling of these local outputs. In each study, the results suggest a more extensive combination of signals in vision than has been previously understood.