992 resultados para Visual Cortex
Resumo:
Background: Subcallosal cingulate gyrus (SCG) deep brain stimulation (DBS) is being investigated as a treatment for major depression. We report on the effects of ventromedial prefrontal cortex (vmPFC) DBS in rats, focusing on possible mechanisms involved in an antidepressant-like response in the forced swim test (FST). Methods: The outcome of vmPFC stimulation alone or combined with different types of lesions, including serotonin (5-HT) or nore-pineprhine (NE) depletion, was characterized in the FST. We also explored the effects of DBS on novelty-suppressed feeding, learned helplessness, and sucrose consumption in animals predisposed to helplessness. Results: Stimulation at parameters approximating those used in clinical practice induced a significant antidepressant-like response in the FST. Ventromedial PFC lesions or local muscimol injections did not lead to a similar outcome. However, animals treated with vmPFC ibotenic acid lesions still responded to DBS, suggesting that the modulation of fiber near the electrodes could play a role in the antidepressant-like effects of stimulation. Also important was the integrity of the serotonergic system, as the effects of DBS in the FST were completely abolished in animals bearing 5-HT, but not NE, depleting lesions. In addition, vmPFC stimulation induced a sustained increase in hippocampal 5-HT levels. Preliminary work with other models showed that DBS was also able to influence specific aspects of depressive-like states in rodents, including anxiety and anhedonia, but not helplessness. Conclusions: Our study suggests that vmPFC DES in rats maybe useful to investigate mechanisms involved in the antidepressant effects of SCG DBS.
Resumo:
Prior experience with the elevated plus maze (EPM) increases the avoidance of rodents to the open arms and impairs the anxiolytic-like effects of benzodiazepines on the traditional behaviors evaluated upon re-exposure to the maze, a phenomenon known as one-trial tolerance. Risk assessment behaviors are also sensitive to benzodiazepines. During re-exposure to the maze, these behaviors reinstate the information-processing initiated during the first experience, and the detection of danger generates stronger open-arm avoidance. The present study investigated whether the benzodiazepine midazolam alters risk assessment behaviors and Fos protein distribution associated with test and retest sessions in the EPM. Naive or maze-experienced Wistar rats received either saline or midazolam (0.5 mg/kg i.p.) and were subjected to the EPM. Midazolam caused the usual effects on exploratory behavior, increasing exploratory activity of naive rats in the open arms and producing no effects on these conventional measures in rats re-exposed to the maze. Risk assessment behaviors, however, were sensitive to the benzodiazepine during both sessions, indicating anxiolytic-like effects of the drug in both conditions. Fos immunohistochemistry showed that midazolam injections were associated with a distinct pattern of action when administered before the test or retest session, and the anterior cingulate cortex, area 1 (Cg1), was the only structure targeted by the benzodiazepine in both situations. Bilateral infusions of midazolam into the Cg1 replicated the behavioral effects of the drug injected systemically, suggesting that this area is critically involved in the anxiolytic-like effects of benzodiazepines, although the behavioral strategy adopted by the animals appears to depend on the previous knowledge of the threatening environment. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The anxiolytic effects of benzodiazepines are reduced after a single exposure of rats to elevated plus-maze test (EPM). Midazolam showed an anxioselective profile in animals submitted to one session (T1) but did not change the usual exploratory behavior of rats exposed twice (T2) to the EPM. In this study we examined further the one-trial tolerance by performing a factor analysis of the exploratory behavior of rats injected with saline before both trials as well as an immunohistochemistry study for quantification of Fos expression in encephalic structures after these sessions. Factor analysis of all behavioral categories revealed that factor I consisted of anxiety-related categories in T1 whereas these same behavioral categories loaded on factor 2 in T2. Risk assessment was also dissociated as it loaded stronger on T2 (factor 3) than on T1 (factor 4). Locomotor activity in T1 loaded on factor 5. Immunohistochemistry analyses showed that Fos expression predominated in limbic structures in T1 group. The medial prefrontal cortex and amygdala were the main areas activated in T2 group. These data suggest that anxiety and risk assessment behaviors change their valence across the EPM sessions. T2 is characterized by the emergence of a fear factor, more powerful risk assessment and medial prefrontal cortex activation. The amygdala functions as a switch between the anxiety-like patterns of T1 to the cognitive control of fear prevalent in T2. The EPM retest session is proposed as a tool for assessing the cognitive activity of rodents in the control of fear. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Independent brain circuits appear to underlie different forms of conditioned fear, depending on the type of conditioning used, such as a context or explicit cue paired with footshocks. Several clinical reports have associated damage to the medial temporal lobe (MTL) with retrograde amnesia. Although a number of studies have elucidated the neural circuits underlying conditioned fear, the involvement of MTL components in the aversive conditioning paradigm is still unclear. To address this issue, we assessed freezing responses and Fos protein expression in subregions of the rhinal cortex and ventral hippocampus of rats following exposure to a context, light or tone previously paired with footshock (Experiment 1). A comparable degree of freezing was observed in the three types of conditioned fear, but with distinct patterns of Fos distribution. The groups exposed to cued fear conditioning did not show changes in Fos expression, whereas the group subjected to contextual fear conditioning showed selective activation of the ectorhinal (Ect), perirhinal (Per), and entorhinal (Ent) cortices, with no changes in the ventral hippocampus. We then examined the effects of the benzodiazepine midazolam injected bilaterally into these three rhinal subregions in the expression of contextual fear conditioning (Experiment 2). Midazolam administration into the Ect, Per, and Ent reduced freezing responses. These findings suggest that contextual and explicit stimuli endowed with aversive properties through conditioning recruit distinct brain areas, and the rhinal cortex appears to be critical for storing context-, but not explicit cue-footshock, associations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Independent studies have shown that the median raphe nucleus (MRN) and dorsal hippocampus (DH) are involved in the expression of contextual conditioned fear (CFC). However, studies that examine the integrated involvement of serotonergic mechanisms of the MRN-DH are lacking. To address this issue, a CFC paradigm was used to test whether the serotonergic projections from the MRN to DH can influence CFC. Serotoninergic drugs were infused either into the MRN or DH prior to testing sessions in which freezing and startle responses were measured in the same context where 6 h previously rats received footshocks. A reduction of serotonin (5-HT) transmission in the MRN by local infusions of the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) decreased freezing in response to the context but did not reduce fear-potentiated startle. This pattern of results is consistent with the hypothesis that MRN serotonergic mechanisms selectively modulate the freezing response to the aversive context. As for the DH, a decrease in postsynaptic 5-HT receptor activity at projection areas has been proposed to be the main consequence of 5-HT(1A) receptor activation in the MIRN. Intra-DH injections of 8-OH-DPAT inhibited both the freezing and fear-potentiated startle response to the context. To reconcile these findings, an inhibitory mechanism may exist between the incoming 5-HT pathway from the MRN to DH and the neurons of the DH output to other structures. The DH-amygdala or medial prefrontal cortex projections could well be this output circuit modulating the expression of CFC as revealed by measurements of Fos immunoreactivity in these areas. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We compared the responsiveness of the LGN and the early retinotopic cortical areas to stimulation of the two cone-opponent systems (red - green and blue - yellow) and the achromatic system. This was done at two contrast levels to control for any effect of contrast. MR images were acquired on seven subjects with a 4T Bruker MedSpec scanner. The early visual cortical areas were localised by phase encoded retinotopic mapping with a volumetric analysis (Dumoulin et al, 2003 NeuroImage 18 576 - 587). We initially located the LGN in four subjects by using flickering stimuli in a separate scanning session, but subsequently identified it using the experimental stimuli. Experimental stimuli were sine-wave counterphasing rings (2 Hz, 0.5 cycle deg-1), cardinal for the selective activation of the L/M cone-opponent (RG), S cone-opponent (BY), and achromatic (Ach) systems. A region of interest analysis was performed. When presented at equivalent absolute contrasts (cone contrast = 5% - 6%), the BOLD response of the LGN is strongest to isoluminant red - green stimuli and weakest to blue - yellow stimuli, with the achromatic response falling in between. Area V1, on the other hand, responds best to both chromatic stimuli, with the achromatic response falling below. The key change from the LGN to V1 is a dramatic boost in the relative blue - yellow response, which occurred at both contrast levels used. This greatly enhanced cortical response to blue - yellow relative to the red - green and achromatic responses may be due to an increase in cell number and/or cell response between the LGN and V1. We speculate that the effect might reflect the operation of contrast constancy across colour mechanisms at the cortical level.
Resumo:
PURPOSE. To evaluate the change in vision after 3 monthly consecutive intravitreal injections of 1.25 mg of bevacizumab for neovascular age-related macular degeneration (AMD). METHODS. A retrospective analysis of 35 eyes was performed. Visual acuity (VA) at initial visit and at each follow-up visit was compared. The injection of bevacizumab was performed at 30-day intervals and patients were observed for 5 months after the last injection. RESULTS. Of the 35 eyes, 9 had received previous treatment with photodynamic therapy with or without 4 mg of intravitreal triamcinolone. VA was measured in Snellen table and transformed into logMAR for statistical purposes. Mean age was 76.66 years (range, 49-90 years). There were 24(69%) women and 11(31%) men. Mean VA at the initial visit was 0.92 +/- 0.50. At month 1, mean VA was 0.84 +/- 0.51 and at month 2 was 0.74 +/- 0.51. At month 3, mean VA remained 0.74 +/- 0.49. Six and 8 months after the initial visit, VA was 0.79 +/- 0.49 and 0.77 +/- 0.50, respectively. The improvement in VA was statistically significant at month 2 and at the end of the follow-up (8 months) compared with the baseline VA. CONCLUSIONS. Three consecutive monthly injections of intravitreal bevacizumab to treat neovascular AMD is effective in improving VA in the short term. Longer prospective studies should be performed to confirm VA stability after the third injection. (Eur J Ophthalmol 2010; 20: 740-4)
Resumo:
In the present study, we analyzed how high-frequency repetitive transcranial magnetic stimulation (rTMS) of the primary motor hand area (M1-Hand) shapes anticipatory motor activity in frontal areas as indexed by the contingent negative variation (CNV). Eight right-handed volunteers received real or sham 5 Hz rTMS at an intensity of 90% resting motorthreshold (1500 stimuli per session). Real but not sham rTMS to left M1-Hand induced a site-specific increase in amplitude of the late component of the CNV at the electrode C3 overlaying the site of stimulation. The increase in pre-movement activity in the stimulated cortex may reflect an increase in facilitatory drive from connected motor areas, enhanced responsiveness of the stimulated cortex to these inputs or both. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Motor cortex stimulation oriented by functional cortical mapping is used mainly for treating otherwise intractable neurological disorders, however. its mechanism of action remains elusive. Herein, we present a new method for functional mapping of the rat motor cortex using non-invasive transdural electrical stimulation. This method allows a non-invasive mapping of the surface of the neocortex providing a differentiation of representative motor areas. This Study may facilitate further investigation about the mechanisms mediating the effects of electrical stimulation, possibly benefiting patients who do not respond to this neuromodulation therapy. (c) 2009 Elsevier B.V. All rights reserved.
The selection of intended actions and the observation of others' actions: A time-resolved fMRI study
Resumo:
Whenever we plan, imagine, or observe an action, the motor systems that would be involved in preparing and executing that action are similarly engaged. The way in which such common motor activation is formed, however, is likely to differ depending on whether it arises from our own intentional selection of action or from the observation of another's action. In this study, we use time-resolved event-related functional MRI to tease apart neural processes specifically related to the processing of observed actions, the selection of our own intended actions, the preparation for movement, and motor response execution. Participants observed a finger gesture movement or a cue indicating they should select their own finger gesture to perform, followed by a 5-s delay period; participants then performed the observed or self-selected action. During the preparation and readiness for action, prior to initiation, we found activation in a common network of higher motor areas, including dorsal and ventral premotor areas and the pre-supplementary motor area (pre-SMA); the more caudal SMA showed greater activation during movement execution. Importantly, the route to this common motor activation differed depending on whether participants freely selected the actions to perform or whether they observed the actions performed by another person. Observation of action specifically involved activation of inferior and superior parietal regions, reflecting involvement of the dorsal visual pathway in visuomotor processing required for planning the action. In contrast, the selection of action specifically involved the dorsal lateral prefrontal and anterior cingulate cortex, reflecting the role of these prefrontal areas in attentional selection and guiding the selection of responses. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Previous work examining context effects in children has been limited to semantic context. The current research examined the effects of grammatical priming of word-naming in fourth-grade children. In Experiment 1, children named both inflected and uninflected noun and verb target words faster when they were preceded by grammatically constraining primes than when they were preceded by neutral primes. Experiment 1 used a long stimulus onset asynchrony (SOA) interval of 750 msec. Experiment 2 replicated the grammatical priming effect at two SOA intervals (400 msec and 700 msec), suggesting that the grammatical priming effect does not reflect the operation of any gross strategic effects directly attributable to the long SOA interval employed in Experiment 1. Grammatical context appears to facilitate target word naming by constraining target word class. Further work is required to elucidate the loci of this effect.