978 resultados para Vila-roja (Girona, Catalunya : Neighborhood) -- History
Resumo:
Tripogon loliiformis is a desiccation-tolerant grass that occurs throughout mainland Australia. There has been recent interest in this species as a model system for understanding desiccation tolerance in a native grass at the structural, molecular and physiological levels. However, not much is known about the biology and natural history of this species, despite its widespread geographic distribution and remarkable capability of withstanding prolonged drying. We provide an overview of the genus by consolidating information from a wide variety of sources. We report a variety of new and interesting observations on the general biology, ecology and desiccation response of T. loliiformis and conclude by highlighting areas for future research.
Resumo:
The concept of feature selection in a nonparametric unsupervised learning environment is practically undeveloped because no true measure for the effectiveness of a feature exists in such an environment. The lack of a feature selection phase preceding the clustering process seriously affects the reliability of such learning. New concepts such as significant features, level of significance of features, and immediate neighborhood are introduced which result in meeting implicitly the need for feature slection in the context of clustering techniques.
Resumo:
Brochure, describing the history of the Jewish community in St. Louis, founded mostly by immigrants from Germany.
Resumo:
Digital image
Resumo:
In 1956 Whitham gave a nonlinear theory for computing the intensity of an acoustic pulse of an arbitrary shape. The theory has been used very successfully in computing the intensity of the sonic bang produced by a supersonic plane. [4.] derived an approximate quasi-linear equation for the propagation of a short wave in a compressible medium. These two methods are essentially nonlinear approximations of the perturbation equations of the system of gas-dynamic equations in the neighborhood of a bicharacteristic curve (or rays) for weak unsteady disturbances superimposed on a given steady solution. In this paper we have derived an approximate quasi-linear equation which is an approximation of perturbation equations in the neighborhood of a bicharacteristic curve for a weak pulse governed by a general system of first order quasi-linear partial differential equations in m + 1 independent variables (t, x1,…, xm) and derived Gubkin's result as a particular case when the system of equations consists of the equations of an unsteady motion of a compressible gas. We have also discussed the form of the approximate equation describing the waves propagating upsteam in an arbitrary multidimensional transonic flow.
Resumo:
In the 21st century, human-induced global climate change has been highlighted as one of the most serious threats to ecosystems worldwide. According to global climate scenarios, the mean temperature in Finland is expected to increase by 1.8 4.0°C by the end of the century. The regional and seasonal change in temperature has predicted to be spatially and temporally asymmetric, where the High-Arctic and Antarctic areas and winter and spring seasons have been projected to face the highest temperature increase. To understand how species respond to the ongoing climate change, we need to study how climate affects species in different phases of their life cycle. The impact of climate on breeding and migration of eight large-sized bird species was studied in this thesis, taking food availability into account. The findings show that climatic variables have considerable impact on the life-history traits of large-sized birds in northern Europe. The magnitude of climatic effects on migration and breeding was comparable with that of food supply, conventionally regarded as the main factor affecting these life-history traits. Based on the results of this thesis and the current climate scenarios, the following not mutually exclusive responses are possible in the near future. Firstly, asymmetric climate change may result in a mistiming of breeding because mild winters and early spring may lead to earlier breeding, whereas offspring are hatching into colder conditions which elevate mortality. Secondly, climate induced responses can differ between species with different breeding tactics (income vs. capital breeding), so that especially capital breeders can gain advantage on global warming as they can sustain higher energy resources. Thirdly, increasing precipitation has the potential to reduce the breeding success of many species by exposing nestlings to more severe post-hatching conditions and hampering the hunting conditions of parents. Fourthly, decreasing ice cover and earlier ice-break in the Baltic Sea will allow earlier spring migration in waterfowl. In eiders, this can potentially lead to more productive breeding. Fifthly, warming temperatures can favour parents preparing for breeding and increase nestling survival. Lastly, the climate-induced phenological changes in life history events will likely continue. Furthermore, interactions between climate and food resources can be complex and interact with each other. Eiders provide an illustrative example of this complexity, being caught in the crossfire between more benign ice conditions and lower salinity negatively affecting their prime food resource. The general conclusion is that climate is controlling not only the phenology of the species but also their reproductive output, thus affecting the entire population dynamics.
Resumo:
This paper by Carl Grodach demonstrates the careful unravelling of complexity, diversity, contestation and contradictions involved in the reconstruction of symbolic urban spaces after violent conflict, and the allied processes of cultural reinterpretation, political reconfiguration and material revaluation which accompany it. The paper analyses the reconstruction and redevelopment of the 16th-century historic centre of Mostar, Bosnia-Herzegovina, following the Bosnian Wars of 1992–1995. Reconstruction efforts centre around Stari Most, the 16th-century Ottoman bridge destroyed by Bosnian Croat military in 1993. In Mostar, both international and local organizations are in the process of reinterpreting Bosnia’s legacy of Ottoman city spaces. This research and analysis illuminates how such spaces can be central to contemporary projects to redefine group identities and conceptions of place. It provides insight into the ways various groups are attempting to reshape outside perceptions of the city—and Bosnia’s ethnic conflict—to articulate a new definition of local identity and ethnic relations and to remake a stable tourist economy through Mostar’s urban spaces.
Resumo:
Most studies of life history evolution are based on the assumption that species exist at equilibrium and spatially distinct separated populations. In reality, this is rarely the case, as populations are often spatially structured with ephemeral local populations. Therefore, the characteristics of metapopulations should be considered while studying factors affecting life history evolution. Theoretical studies have examined spatial processes shaping the evolution of life history traits to some extent, but there is little empirical data and evidence to investigate model predictions. In my thesis I have tried to bridge the gap between theoretical and empirical studies by using the well-known Glanville fritillary (Melitaea cinxia) metapopulation as a model system. The long-term persistence of classic metapopulations requires sufficient dispersal to establish new local populations to compensate for local extinctions. Previous studies on the Glanville fritillary have shown that females establishing new populations are not a random sample from the metapopulation, but they are in fact more dispersive than females in old populations. Many other life-history traits, such as body size, fecundity and lifespan, may be related to dispersal rate. Therefore, I examined a range of correlated traits for their evolutionary and ecological consequences. I was particularly interested in how the traits vary under natural environmental conditions, hence all studies were conducted in a large (32 x 26 m) outdoor population cage built upon a natural habitat patch. Individuals for the experiments were sampled from newly-established and old populations within a large metapopulation. Results show that females originating from newly-established populations had higher within-habitat patch mobility than females from old populations. I showed that dispersal rate is heritable and that flight activity is related to variation in a gene encoding the glycolytic enzyme phosphoglucose isomerase. Both among-individual and among-population variation in dispersal are correlated with the reproductive performance of females, though I found no evidence for a trade-off between dispersal and fecundity in terms of lifetime egg production or clutch size. Instead, the results suggest that highly dispersive females from newly-established populations have a shorter lifespan than females from old populations, and that dispersive females may pay a cost in terms of reduced lifetime reproductive success due to increased time spent outside habitat patches. In summary, the results of this thesis show that genotype-dependent dispersal rate correlates with other life history traits in the Glanville fritillary, and that the rapid turnover of local populations (extinctions and re-colonisations) is likely to be the mechanism that maintains phenotypic variation in many life history traits at the metapopulation level.
Resumo:
In this thesis, the genetic variation of human populations from the Baltic Sea region was studied in order to elucidate population history as well as evolutionary adaptation in this region. The study provided novel understanding of how the complex population level processes of migration, genetic drift, and natural selection have shaped genetic variation in North European populations. Results from genome-wide, mitochondrial DNA and Y-chromosomal analyses suggested that the genetic background of the populations of the Baltic Sea region lies predominantly in Continental Europe, which is consistent with earlier studies and archaeological evidence. The late settlement of Fennoscandia after the Ice Age and the subsequent small population size have led to pronounced genetic drift, especially in Finland and Karelia but also in Sweden, evident especially in genome-wide and Y-chromosomal analyses. Consequently, these populations show striking genetic differentiation, as opposed to much more homogeneous pattern of variation in Central European populations. Additionally, the eastern side of the Baltic Sea was observed to have experienced eastern influence in the genome-wide data as well as in mitochondrial DNA and Y-chromosomal variation – consistent with linguistic connections. However, Slavic influence in the Baltic Sea populations appears minor on genetic level. While the genetic diversity of the Finnish population overall was low, genome-wide and Y-chromosomal results showed pronounced regional differences. The genetic distance between Western and Eastern Finland was larger than for many geographically distant population pairs, and provinces also showed genetic differences. This is probably mainly due to the late settlement of Eastern Finland and local isolation, although differences in ancestral migration waves may contribute to this, too. In contrast, mitochondrial DNA and Y-chromosomal analyses of the contemporary Swedish population revealed a much less pronounced population structure and a fusion of the traces of ancient admixture, genetic drift, and recent immigration. Genome-wide datasets also provide a resource for studying the adaptive evolution of human populations. This study revealed tens of loci with strong signs of recent positive selection in Northern Europe. These results provide interesting targets for future research on evolutionary adaptation, and may be important for understanding the background of disease-causing variants in human populations.
Resumo:
This study addressed the large-scale molecular zoogeography in two brackish water bivalve molluscs, Macoma balthica and Cerastoderma glaucum, and genetic signatures of the postglacial colonization of Northern Europe by them. The traditional view poses that M. balthica in the Baltic, White and Barents seas (i.e. marginal seas) represent direct postglacial descendants of the adjacent Northeast Atlantic populations, but this has recently been challenged by observations of close genetic affinities between these marginal populations and those of the Northeast Pacific. The primary aim of the thesis was to verify, quantify and characterize the Pacific genetic contribution across North European populations of M. balthica and to resolve the phylogeographic histories of the two bivalve taxa in range-wide studies using information from mitochondrial DNA (mtDNA) and nuclear allozyme polymorphisms. The presence of recent Pacific genetic influence in M. balthica of the Baltic, White and Barents seas, along with an Atlantic element, was confirmed by mtDNA sequence data. On a broader temporal and geographical scale, altogether four independent trans-Arctic invasions of Macoma from the Pacific since the Miocene seem to have been involved in generating the current North Atlantic lineage diversity. The latest trans-Arctic invasion that affected the current Baltic, White and Barents Sea populations probably took place in the early post-glacial. The nuclear genetic compositions of these marginal sea populations are intermediate between those of pure Pacific and Atlantic subspecies. In the marginal sea populations of mixed ancestry (Barents, White and Northern Baltic seas), the Pacific and Atlantic components are now randomly associated in the genomes of individual clams, which indicates both pervasive historical interbreeding between the previously long-isolated lineages (subspecies), and current isolation of these populations from the adjacent pure Atlantic populations. These mixed populations can be characterized as self-supporting hybrid swarms, and they arguably represent the most extensive marine animal hybrid swarms so far documented. Each of the three swarms still has a distinct genetic composition, and the relative Pacific contributions vary from 30 to 90 % in local populations. This diversity highlights the potential of introgressive hybridization to rapidly give rise to new evolutionarily and ecologically significant units in the marine realm. In the south of the Danish straits and in the Southern Baltic Sea, a broad genetic transition zone links the pure North Sea subspecies M. balthica rubra to the inner Baltic hybrid swarm, which has about 60 % of Pacific contribution in its genome. This transition zone has no regular smooth clinal structure, but its populations show strong genotypic disequilibria typical of a hybrid zone maintained by the interplay of selection and gene flow by dispersing pelagic larvae. The structure of the genetic transition is partly in line with features of Baltic water circulation and salinity stratification, with greater penetration of Atlantic genes on the Baltic south coast and in deeper water populations. In all, the scenarios of historical isolation and secondary contact that arise from the phylogeographic studies of both Macoma and Cerastoderma shed light to the more general but enigmatic patterns seen in marine phylogeography, where deep genetic breaks are often seen in species with high dispersal potential.