976 resultados para Vertically rising aircraft
Resumo:
Many operational weather forecasting centres use semi-implicit time-stepping schemes because of their good efficiency. However, as computers become ever more parallel, horizontally explicit solutions of the equations of atmospheric motion might become an attractive alternative due to the additional inter-processor communication of implicit methods. Implicit and explicit (IMEX) time-stepping schemes have long been combined in models of the atmosphere using semi-implicit, split-explicit or HEVI splitting. However, most studies of the accuracy and stability of IMEX schemes have been limited to the parabolic case of advection–diffusion equations. We demonstrate how a number of Runge–Kutta IMEX schemes can be used to solve hyperbolic wave equations either semi-implicitly or HEVI. A new form of HEVI splitting is proposed, UfPreb, which dramatically improves accuracy and stability of simulations of gravity waves in stratified flow. As a consequence it is found that there are HEVI schemes that do not lose accuracy in comparison to semi-implicit ones. The stability limits of a number of variations of trapezoidal implicit and some Runge–Kutta IMEX schemes are found and the schemes are tested on two vertical slice cases using the compressible Boussinesq equations split into various combinations of implicit and explicit terms. Some of the Runge–Kutta schemes are found to be beneficial over trapezoidal, especially since they damp high frequencies without dropping to first-order accuracy. We test schemes that are not formally accurate for stiff systems but in stiff limits (nearly incompressible) and find that they can perform well. The scheme ARK2(2,3,2) performs the best in the tests.
Resumo:
During a series of 8 measurement campaigns within the SPURT project (2001-2003), vertical profiles of CO and O3 have been obtained at subtropical, middle and high latitudes over western Europe, covering the troposphere and lowermost stratosphere up to ~14 km altitude during all seasons. The seasonal and latitudinal variation of the measured trace gas profiles are compared to simulations with the chemical transport model MATCH. In the troposphere reasonable agreement between observations and model predictions is achieved for CO and O3, in particular at subtropical and mid-latitudes, while the model overestimates (underestimates) CO (O3 in the lowermost stratosphere particularly at high latitudes, indicating too strong simulated bi-directional exchange across the tropopause. By the use of tagged tracers in the model, long-range transport of Asian air masses is identified as the dominant source of CO pollution over Europe in the free troposphere.
Resumo:
This article reports the results of an experiment that examined how demand aggregators can discipline vertically-integrated firms - generator and distributor-retailer holdings-, which have a high share in wholesale electricity market with uniform price double auction (UPDA). We initially develop a treatment where holding members redistribute the profit based on the imposition of supra-competitive prices, in equal proportions (50%-50%). Subsequently, we introduce a vertical disintegration (unbundling) treatment with holding-s information sharing, where profits are distributed according to market outcomes. Finally, a third treatment is performed to introduce two active demand aggregators, with flexible interruptible loads in real time. We found that the introduction of responsive demand aggregators neutralizes the power market and increases market efficiency, even beyond what is achieved through vertical disintegration.
Resumo:
The Eyjafjallajökull volcano in Iceland emitted a cloud of ash into the atmosphere during April and May 2010. Over the UK the ash cloud was observed by the FAAM BAe-146 Atmospheric Research Aircraft which was equipped with in-situ probes measuring the concentration of volcanic ash carried by particles of varying sizes. The UK Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME) has been used to simulate the evolution of the ash cloud emitted by the Eyjafjallajökull volcano during the period 4–18 May 2010. In the NAME simulations the processes controlling the evolution of the concentration and particle size distribution include sedimentation and deposition of particles, horizontal dispersion and vertical wind shear. For travel times between 24 and 72 h, a 1/t relationship describes the evolution of the concentration at the centre of the ash cloud and the particle size distribution remains fairly constant. Although NAME does not represent the effects of microphysical processes, it can capture the observed decrease in concentration with travel time in this period. This suggests that, for this eruption, microphysical processes play a small role in determining the evolution of the distal ash cloud. Quantitative comparison with observations shows that NAME can simulate the observed column-integrated mass if around 4% of the total emitted mass is assumed to be transported as far as the UK by small particles (< 30 μm diameter). NAME can also simulate the observed particle size distribution if a distal particle size distribution that contains a large fraction of < 10 μm diameter particles is used, consistent with the idea that phraetomagmatic volcanoes, such as Eyjafjallajökull, emit very fine particles.
Resumo:
With the prospect of exascale computing, computational methods requiring only local data become especially attractive. Consequently, the typical domain decomposition of atmospheric models means horizontally-explicit vertically-implicit (HEVI) time-stepping schemes warrant further attention. In this analysis, Runge-Kutta implicit-explicit schemes from the literature are analysed for their stability and accuracy using a von Neumann stability analysis of two linear systems. Attention is paid to the numerical phase to indicate the behaviour of phase and group velocities. Where the analysis is tractable, analytically derived expressions are considered. For more complicated cases, amplification factors have been numerically generated and the associated amplitudes and phase diagnosed. Analysis of a system describing acoustic waves has necessitated attributing the three resultant eigenvalues to the three physical modes of the system. To do so, a series of algorithms has been devised to track the eigenvalues across the frequency space. The result enables analysis of whether the schemes exactly preserve the non-divergent mode; and whether there is evidence of spurious reversal in the direction of group velocities or asymmetry in the damping for the pair of acoustic modes. Frequency ranges that span next-generation high-resolution weather models to coarse-resolution climate models are considered; and a comparison is made of errors accumulated from multiple stability-constrained shorter time-steps from the HEVI scheme with a single integration from a fully implicit scheme over the same time interval. Two schemes, “Trap2(2,3,2)” and “UJ3(1,3,2)”, both already used in atmospheric models, are identified as offering consistently good stability and representation of phase across all the analyses. Furthermore, according to a simple measure of computational cost, “Trap2(2,3,2)” is the least expensive.
Resumo:
In addition to CO2, the climate impact of aviation is strongly influenced by non-CO2 emissions, such as nitrogen oxides, influencing ozone and methane, and water vapour, which can lead to the formation of persistent contrails in ice-supersaturated regions. Because these non-CO2 emission effects are characterised by a short lifetime, their climate impact largely depends on emission location and time; that is to say, emissions in certain locations (or times) can lead to a greater climate impact (even on the global average) than the same emission in other locations (or times). Avoiding these climate-sensitive regions might thus be beneficial to climate. Here, we describe a modelling chain for investigating this climate impact mitigation option. This modelling chain forms a multi-step modelling approach, starting with the simulation of the fate of emissions released at a certain location and time (time-region grid points). This is performed with the chemistry–climate model EMAC, extended via the two submodels AIRTRAC (V1.0) and CONTRAIL (V1.0), which describe the contribution of emissions to the composition of the atmosphere and to contrail formation, respectively. The impact of emissions from the large number of time-region grid points is efficiently calculated by applying a Lagrangian scheme. EMAC also includes the calculation of radiative impacts, which are, in a second step, the input to climate metric formulas describing the global climate impact of the emission at each time-region grid point. The result of the modelling chain comprises a four-dimensional data set in space and time, which we call climate cost functions and which describes the global climate impact of an emission at each grid point and each point in time. In a third step, these climate cost functions are used in an air traffic simulator (SAAM) coupled to an emission tool (AEM) to optimise aircraft trajectories for the North Atlantic region. Here, we describe the details of this new modelling approach and show some example results. A number of sensitivity analyses are performed to motivate the settings of individual parameters. A stepwise sanity check of the results of the modelling chain is undertaken to demonstrate the plausibility of the climate cost functions.
Resumo:
Observations of turbulent fluxes of momentum, heat and moisture from low-level aircraft data are presented. Fluxes are calculated using the eddy covariance technique from flight legs typically ∼40 m above the sea surface. Over 400 runs of 2 min (∼12 km) from 26 flights are evaluated. Flight legs are mainly from around the British Isles although a small number are from around Iceland and Norway. Sea-surface temperature (SST) observations from two on-board sensors (the ARIES interferometer and a Heimann radiometer) and a satellite-based analysis (OSTIA) are used to determine an improved SST estimate. Most of the observations are from moderate to strong wind speed conditions, the latter being a regime short of validation data for the bulk flux algorithms that are necessary for numerical weather prediction and climate models. Observations from both statically stable and unstable atmospheric boundary-layer conditions are presented. There is a particular focus on several flights made as part of the DIAMET (Diabatic influence on mesoscale structures in extratropical storms) project. Observed neutral exchange coefficients are in the same range as previous studies, although higher for the momentum coefficient, and are broadly consistent with the COARE 3.0 bulk flux algorithm, as well as the surface exchange schemes used in the ECMWF and Met Office models. Examining the results as a function of aircraft heading shows higher fluxes and exchange coefficients in the across-wind direction, compared to along-wind (although this comparison is limited by the relatively small number of along-wind legs). A multi-resolution spectral decomposition technique demonstrates a lengthening of spatial scales in along-wind variances in along-wind legs, implying the boundary-layer eddies are elongated in the along-wind direction. The along-wind runs may not be able to adequately capture the full range of turbulent exchange that is occurring because elongation places the largest eddies outside of the run length.
Resumo:
New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 μm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (deff) from 2.3 to 19.4 μm and coarse mode volume median diameter (dvc) from 5.8 to 45.3 μm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with deff >12 μm, or dvc >25 μm) were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration. Single Scattering Albed (SSA) values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to deff. New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when deff is greater than 2 μm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have an impact on Saharan atmospheric dynamics and circulation,which should be taken into account by numerical weather prediction and climate models.
Resumo:
This paper outlines some of the physics opportunities available with the GSI RISING active stopper and presents preliminary results from an experiment aimed at performing beta-delayed gamma-ray spectroscopic studies in heavy-neutron-rich nuclei produced following the projectile fragmentation of a 1 GeV per nucleon 208Pb primary beam. The energy response of the silicon active stopping detector for both heavy secondary fragments and beta-particles is demonstrated and preliminary results on the decays of neutron-rich Tantalum (Ta) to Tungsten (W) isotopes are presented as examples of the potential of this technique to allow new structural studies in hitherto experimentally unreachable heavy, neutron-rich nuclei. The resulting spectral information inferred from excited states in the tungsten daughter nuclei are compared with results from axially symmetric Hartree–Fock calculations of the nuclear shape and suggest a change in ground state structure for the N = 116 isotone 190W compared to the lighter isotopes of this element.
Resumo:
This conference paper outlines the operation and some of the preliminary physics results using the GSI RISING active stopper. Data are presented from an experiment using combined isomer and beta‐delayed gamma‐ray spectroscopy to study low‐lying spectral and decay properties of heavy‐neutron‐rich nuclei around A∼190 produced following the relativistic projectile fragmentation of 208Pb primary beam. The response of the RISING active stopper detector is demonstrated for both the implantation of heavy secondary fragments and in‐situ decay of beta‐particles. Beta‐delayed gamma‐ray spectroscopy following decays of the neutron‐rich nucleus 194Re is presented to demonstrate the experimental performance of the set‐up. The resulting information inferred from excited states in the W and Os daughter nuclei is compared with results from Skyrme Hartree‐Fock predictions of the evolution of nuclear shape.
Resumo:
The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance.
Resumo:
The first size-resolved airborne measurements of dust fluxes and the first dust flux measurements from the central Sahara are presented and compared with a parameterization by Kok (2011a). High-frequency measurements of dust size distribution were obtained from 0.16 to 300 µm diameter, and eddy covariance fluxes were derived. This is more than an order of magnitude larger size range than previous flux estimates. Links to surface emission are provided by analysis of particle drift velocities. Number flux is described by a −2 power law between 1 and 144 µm diameter, significantly larger than the 12 µm upper limit suggested by Kok (2011a). For small particles, the deviation from a power law varies with terrain type and the large size cutoff is correlated with atmospheric vertical turbulent kinetic energy, suggesting control by vertical transport rather than emission processes. The measured mass flux mode is in the range 30–100 µm. The turbulent scales important for dust flux are from 0.1 km to 1–10 km. The upper scale increases during the morning as boundary layer depth and eddy size increase. All locations where large dust fluxes were measured had large topographical variations. These features are often linked with highly erodible surface features, such as wadis or dunes. We also hypothesize that upslope flow and flow separation over such features enhance the dust flux by transporting large particles out of the saltation layer. The tendency to locate surface flux measurements in open, flat terrain means these favored dust sources have been neglected in previous studies.
Resumo:
The field campaign LOFZY 2005 (LOFoten ZYklonen, engl.: Cyclones) was carried out in the frame of Collaborative Research Centre 512, which deals with low-pressure systems (cyclones) and the climate system of the North Atlantic. Cyclones are of special interest due to their influence on the interaction between atmosphere and ocean. Cyclone activity in the northern part of the Atlantic Ocean is notably high and is of particular importance for the entire Atlantic Ocean. An area of maximum precipitation exists in front of the Norwegian Lofoten islands. One aim of the LOFZY field campaign was to clarify the role cyclones play in the interaction of ocean and atmosphere. In order to obtain a comprehensive dataset of cyclone activity and ocean-atmosphere interaction a field experiment was carried out in the Lofoten region during March and April 2005. Employed platforms were the Irish research vessel RV Celtic Explorer which conducted a meteorological (radiosondes, standard parameters, observations) and an oceanographic (CTD) program. The German research aircraft Falcon accomplished eight flight missions (between 4-21 March) to observe synoptic conditions with high spatial and temporal resolution. In addition 23 autonomous marine buoys were deployed in advance of the campaign in the observed area to measure drift, air-temperature and -pressure and water-temperature. In addition to the published datasets several other measurements were performed during the experiment. Corresonding datasets will be published in the near future and are available on request. Details about all used platforms and sensors and all performed measurements are listed in the fieldreport. The following datasets are available on request: ground data at RV Celtic Explorer
Resumo:
This cross-sectional study determined the influence of antiretroviral therapy (ART) on the lipid profile and insulin sensitivity of 119 perinatally HIV-infected Brazilian patients aged 6-19 years. Inadequate high-density lipoprotein cholesterol (HDL-c) concentrations were observed in 81.4% of patients. High concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDI.-c) and triglycerides (TG) were found in 33.9%, 9.7% and 35.6% of patients, respectively. There were statistically significant differences in mean concentrations of TC (P=0.004), HDL-c (P=0.015) and LDL-c (P=0.028) among children (< 10 years), early adolescents (10-14 years) and late adolescents (15-19 years). Children presented the highest mean concentrations of TC and LDL-c, and patients in late adolescence presented the lowest concentrations of HDL-c. Insulin sensitivity, assessed by the Homeostasis Model Assessment (HOMA) index, was diagnosed in 16.7% of patients, with a statistically higher proportion (P=0.034) of insulin-resistant children (33.3%) compared with adolescents (12.5%). There was a statistically significant association between TG concentrations and use of ART regimens containing protease inhibitors (PI) (P=0.0003). Children presented a higher prevalence of insulin resistance and dyslipidaemia compared with adolescents, suggesting that ART, especially Pls, may lead to metabolic complications. (C) 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
Lymphocyte subsets, activation markers and apoptosis were assessed in 20 HIV-exposed noninfected (ENI) children born to HIV-infected women who were or not exposed to antiretroviral (ARV) drugs during pregnancy and early infancy. ENI children and adolescents were aged 6-18 years and they were compared to 25 age-matched healthy non-HIV-exposed children and adolescents (Control). ENI individuals presented lower CD4(+) T cells/mm(3) than Control group (control: 1120.3 vs. ENI: 876.3; t-test, p=0.030). ENI individuals had higher B-cell apoptosis than Control group (Control: 36.6%, ARV exposed: 82.3%, ARV nonexposed: 68.5%; Kruskal-Wallis, p < 0.05), but no statistical difference was noticed between those exposed and not exposed to ARV. Immune activation in CD4(+) T, CD8(+) T and in B cells was comparable in ENI and in Control children and adolescents. Subtle long-term immune alterations might persist among ENI individuals, but the clinical consequences if any are unknown, and these children require continued monitoring.