840 resultados para Vehicle to vehicle communications
Resumo:
Remotely operated vehicle (ROV) surveys were conducted from NOAA’s state-of-the-art Fisheries Survey Vessel (FSV) Bell M. Shimada during a six-day transit November 1-5, 2010 between San Diego, CA and Seattle, WA. The objective of this survey was to locate and characterize deep-sea coral and sponge ecosystems at several recommended sites in support of NOAA’s Coral Reef Conservation Program. Deep-sea corals and sponges were photographed and collected whenever possible using the Southwest Fisheries Science Center’s (SWFSC) Phantom ROV ‘Sebastes’ (Fig. 1). The surveyed sites were recommended by National Marine Sanctuary (NMS) scientists at Monterey Bay NMS, Gulf of the Farallones NMS, and Olympic Coast NMS (Fig. 2). The specific sites were: Sur Canyon, The Football, Coquille Bank, and Olympic Coast NMS. During each dive, the ROV collected digital still images, video, navigation, and along-track conductivity-temperature-depth (CTD), and optode data. Video and high-resolution photographs were used to quantify abundance of corals, sponges, and associated fishes and invertebrates to the lowest practicable taxonomic level, and also to classify the seabed by substrate type. A reference laser system was used to quantify area searched and estimate the density of benthic fauna.
Resumo:
A method is presented for the digital simulation of multiple degrees-of-freedom lumped parameter vibrating systems with arbitrary constitutive elements in an inertial frame of reference. The geometry of the system is treated independently of the constitutive elements and as a result nonlinear (time domain) or linearised (frequency domain) calculations may be performed using a single input description. The method is used to simulate a 3-axle rigid heavy commercial vehicle for harsh vibrating conditions. Some of the assumptions to which the calculations are sensitive are examined. Agreement between the response of a 3-dimensional whole vehicle model and measurements on the test vehicle is satisfactory.
Resumo:
A new experimental articulated vehicle with computer-controlled suspensions is used to investigate the benefits of active roll control for heavy vehicles. The mechanical hardware, the instrumentation, and the distributed control architecture are detailed. A simple roll-plane model is developed and validated against experimental data, and used to design a controller based on lateral acceleration feedback. The controller is implemented and tested on the experimental vehicle. By tilting both the tractor drive axle and the trailer inwards, substantial reductions in normalized lateral load transfer are obtained, both in steady state and transient conditions. Power requirements are also considered. © IMechE 2005.
Resumo:
This paper describes the design considerations for a proposed aerodynamic characterization facility (ACF) for micro aerial vehicles (MAVs). This is a collaborative effort between the Air Force Research Laboratory Munitions Directorate (AFRL/MN) and the University of Florida Research and Engineering Education Facility (UF/REEF). The ACF is expected to provide a capability for the characterization of the aerodynamic performance of future MAVs. This includes the ability to gather the data necessary to devise control strategies as well as the potential to investigate aerodynamic 'problem areas' or specific failings. Since it is likely that future MAVs will incorporate advanced control strategies, the facility must enable researchers to critically assess such novel methods. Furthermore, the aerodynamic issues should not be seen (and tested) in isolation, but rather the facility should be able to also provide information on structural responses (such as aeroelasticity) as well as integration issues (say, thrust integration or sensor integration). Therefore the mission for the proposed facility ranges form fairly basic investigations of individual technical issues encountered by MAVs (for example an evaluation of wing shapes or control effectiveness) all the way to testing a fully integrated vehicle in a flight configuration for performance evaluation throughout the mission envelope.
Resumo:
A semi-active truck damper was developed in conjunction with a commercial shock absorber manufacturer. A linearized damper model was developed for control system design purposes. Open- and closed-loop damper force tracking control was implemented, with tests showing that an open-loop approach gave the best compromise between response speed and accuracy. A hardware-in-the-loop test facility was used to investigate performance of the damper when combined with a simulated quarter-car model. The input to the vehicle model was a set of randomly generated road profiles, each profile traversed at an appropriate speed. Modified skyhook damping tests showed a simultaneous improvement over the optimum passive case of 13 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. Full-scale vehicle tests of the damper on a heavy tri-axle trailer were carried out. Implementation of modified skyhook damping yielded a simultaneous improvement over the optimum passive case of 8 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. © IMechE 2008.
Resumo:
A mathematical model is developed to predict the energy consumption of a heavy vehicle. It includes the important factors of heavy-vehicle energy consumption, namely engine and drivetrain performances, losses due to accessories, aerodynamic drag, rolling resistance, road gradients, and driver behaviour. Novel low-cost testing methods were developed to determine engine and drivetrain characteristics. A simple drive cycle was used to validate the model. The model is able to predict the fuel use for a 371 tractor-semitrailer vehicle over a 4 km drive cycle within 1 per cent. This paper demonstrates that accurate and reliable vehicle benchmarking and model parameter measurement can be achieved without expensive equipment overheads, e.g. engine and chassis dynamometers.
Resumo:
A receding horizon steering controller is presented, capable of pushing an oversteering nonlinear vehicle model to its handling limit while travelling at constant forward speed. The controller is able to optimise the vehicle path, using a computationally efficient and robust technique, so that the vehicle progression along a track is maximised as a function of time. The resultant method forms part of the solution to the motor racing objective of minimising lap time. © 2011 AACC American Automatic Control Council.
Resumo:
Work presented in this paper studies the potential of employing inerters -a novel mechanical device used successfully in racing cars- in active suspension configurations with the aim to enhance railway vehicle system performance. The particular element of research in this paper concerns railway wheelset lateral stability control. Controlled torques are applied to the wheelsets using the concept of absolute stiffness. The effects of a reduced set of arbitrary passive structures using springs, dampers and inerters integrated to the active solution are discussed. A multi-objective optimisation problem is defined for tuning the parameters of the proposed configurations. Finally, time domain simulations are assessed for the railway vehicle while negotiating a curved track. A simplification of the design problem for stability is attained with the integration of inerters to the active solutions. © 2012 IEEE.
Resumo:
This paper is concerned with time-domain optimal control of active suspensions. The optimal control problem formulation has been generalised by incorporating both road disturbances (ride quality) and a representation of driver inputs (handling quality) into the optimal control formulation. A regular optimal control problem as well as a risk-sensitive exponential optimal control performance index is considered. Emphasis has been given to practical considerations including the issue of state estimation in the presence of load disturbances (driver inputs). © 2012 IEEE.
Resumo:
Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.
Resumo:
An investigation into the potential for reducing road damage by optimising the design of heavy vehicle suspensions is described. In the first part of the paper two simple mathematical models are used to study the optimisation of conventional passive suspensions. Simple modifications are made to the steel spring suspension of a tandem axle trailer and it is found experimentally that RMS dynamic tyre forces can be reduced by 15% and theoretical road damage by 5.2%. A mathematical model of an air-sprung articulated vehicle is validated, and its suspension is optimised according to the simple models. This vehicle generates about 9% less damage than the leaf-sprung vehicle in the unmodified state and it is predicted that, for the operating conditions examined, the road damage caused by this vehicle can be reduced by a further 5.4%. Finally, it is shown experimentally that computer-controlled semi-active dampers have the potential to reduce road damage by a further 5-6%, compared to an air suspension with optimum passive damping. © Copyright 1994 Society of Automotive Engineers, Inc.
Resumo:
Customer feedback is normally fed into product design and engineering via quality surveys and therefore mainly comprises negative comments: complaints about things gone wrong. Whilst eradication of such problems will result in a feeling of satisfaction in existing customers, it will not instil the sense of delight required to attract conquest buyers. CUPID's aim is to conceive and evaluate ideas to stimulate product desirability through the provision of delightful features and execution. By definition, surprise and delight features cannot be foreseen, so we have to understand sensory appeal and, therefore, the "hidden" voice of the customer. Copyright © 2002 Society of Automotive Engineers, Inc.
Resumo:
Over 100 suppliers have now taken part in an initiative built to improve joint design and development performance of tier one suppliers and one vehicle manufacturer. Significant targets were set - 30 % cost down and 30% faster design time with 40% less development budget - and achieved An analysis of the initiative was used to determine the critical success factors. These include significant detail findings in the areas of performance measurement and alignment of development processes. Equal attention is given to understanding how co-development can be implemented and the paper will present findings related to objectivity, perception of partners and partnerships. Copyright © 2002 Society of Automotive Engineers, Inc.