918 resultados para Vehicle roofs.
Resumo:
This note investigates the motion control of an autonomous underwater vehicle (AUV). The AUV is modeled as a nonholonomic system as any lateral motion of a conventional, slender AUV is quickly damped out. The problem is formulated as an optimal kinematic control problem on the Euclidean Group of Motions SE(3), where the cost function to be minimized is equal to the integral of a quadratic function of the velocity components. An application of the Maximum Principle to this optimal control problem yields the appropriate Hamiltonian and the corresponding vector fields give the necessary conditions for optimality. For a special case of the cost function, the necessary conditions for optimality can be characterized more easily and we proceed to investigate its solutions. Finally, it is shown that a particular set of optimal motions trace helical paths. Throughout this note we highlight a particular case where the quadratic cost function is weighted in such a way that it equates to the Lagrangian (kinetic energy) of the AUV. For this case, the regular extremal curves are constrained to equate to the AUV's components of momentum and the resulting vector fields are the d'Alembert-Lagrange equations in Hamiltonian form.
Resumo:
This paper presents an enhanced hypothesis verification strategy for 3D object recognition. A new learning methodology is presented which integrates the traditional dichotomic object-centred and appearance-based representations in computer vision giving improved hypothesis verification under iconic matching. The "appearance" of a 3D object is learnt using an eigenspace representation obtained as it is tracked through a scene. The feature representation implicitly models the background and the objects observed enabling the segmentation of the objects from the background. The method is shown to enhance model-based tracking, particularly in the presence of clutter and occlusion, and to provide a basis for identification. The unified approach is discussed in the context of the traffic surveillance domain. The approach is demonstrated on real-world image sequences and compared to previous (edge-based) iconic evaluation techniques.
Resumo:
This study investigates the production of alginate microcapsules, which have been coated with the polysaccharide chitosan, and evaluates some of their properties with the intention of improving the gastrointestinal viability of a probiotic (Bifidobacterium breve) by encapsulation in this system. The microcapsules were dried by a variety of methods, and the most suitable was chosen. The work described in this Article is the first report detailing the effects of drying on the properties of these microcapsules and the viability of the bacteria within relative to wet microcapsules. The pH range over which chitosan and alginate form polyelectrolyte complexes was explored by spectrophotometry, and this extended into swelling studies on the microcapsules over a range of pHs associated with the gastrointestinal tract. It was shown that chitosan stabilizes the alginate microcapsules at pHs above 3, extending the stability of the capsules under these conditions. The effect of chitosan exposure time on the coating thickness was investigated for the first time by confocal laser scanning microscopy, and its penetration into the alginate matrix was shown to be particularly slow. Coating with chitosan was found to increase the survival of B. breve in simulated gastric fluid as well as prolong its release upon exposure to intestinal pH.
Resumo:
Green roof plants alter the microclimate of building roofs and may improve roof insulation. They act by providing cooling by shading, but also through transpiration of water through their stomata. However, leaf surfaces can become warmer when plants close the stomata and decrease water loss in response to drying substrate (typically associated with green roofs during summers), also reducing transpirational cooling. By using a range of contrasting plant types (Sedum mix – an industry green roof ‘standard’, Stachys byzantina, Bergenia cordifolia and Hedera hibernica) we tested the hypothesis that plants differ in their ‘cooling potential’. We firstly examined how leaf morphology influenced leaf temperature and how drying substrate altered that response. Secondly, we investigated the relationship between leaf surface temperatures and the air temperatures immediately above the canopies (i.e. potential to provide aerial cooling). Finally we measured how the plant type influenced the substrate temperature below the canopy (i.e. potential for building cooling). In our experiments Stachys outperformed the other species in terms of leaf surface cooling (even in drying substrate, e.g. 5 oC cooler compared with Sedum), substrate cooling beneath its canopy (up to 12 oC) and even - during short intervals over hottest still periods - the air above the canopy (up to 1 oC, when soil moisture was not limited). We suggest that the choice of plant species on green roofs should not be entirely dictated by what survives on the shallow substrates of extensive systems, but consideration should be given to supporting those species providing the greatest eco-system service potential.
Resumo:
The intake fraction (iF) of nonreactive constituents of exhaust from mobile vehicles in the urban area of HongKong is investigated using available monitoring data for carbon monoxide (CO) as a tracer of opportunity. Correcting for regional transport of carbon monoxide into HongKong, the annual-average iF for nonreactive motor vehicle emissions within the city is estimated to be around 270 per million. This estimated iF is much higher than values previously reported for vehicle emissions in US urban areas, Helsinki and Beijing, and somewhat lower than those reported for a densely populated street canyon in downtown Manhattan, New York City, or for emissions into indoor environments. The reported differences in intakefractions in various cities mainly result from the differences in local population densities. Our analysis highlights the importance of accounting for the influence of upwind transport of pollutants when using ambient data to estimate iF for an urban area. For vehicleexhaust in HongKong, it is found that the in/near vehicle microenvironment contributes similarly to the indoor home environment when accounting for the overall iF for children and adults. Keywords Intakefraction; Vehicle emission; Regional pollutant transport; Carbon monoxide; Exposure
Resumo:
The type and thickness of insulation on the topside horizontal of cold pitched roofs has a significant role in controlling air movement, energy conservation and moisture transfer reduction through the ceiling to the loft (roof void) space. To investigate its importance, a numerical model using a HAM software package on a Matlab platform with a Simulink simulation tool has been developed using insitu measurements of airflows from the dwelling space through the ceiling to the loft of three houses of different configurations and loft space. Considering typical UK roof underlay (i.e. bituminous felt and a vapour permeable underlay), insitu measurements of the 3 houses were tested using a calibrated passive sampling technique. Using the measured airflows, the effect of air movement on three types of roof insulation (i.e. fibreglass, cellulose and foam) was modelled to investigate associated energy losses and moisture transport. The thickness of the insulation materials were varied but the ceiling airtightness and eaves gap size were kept constant. These instances were considered in order to visualize the effects of the changing parameters. In addition, two different roof underlays of varying resistances were considered and compared to access the influence of the underlay, if any, on energy conservation. The comparison of these insulation materials in relation to the other parameters showed that the type of insulation material and thickness, contributes significantly to energy conservation and moisture transfer reduction through the roof and hence of the building as a whole.
Resumo:
This article considers the evolution and impact on schools in England of the "Framework for English" since its introduction in 2001, a national initiative that follows on from the National Literacy Strategy, which focused on primary schools. Whilst acknowledging that the Framework is part of a whole school policy, "The Key Stage Three Strategy", I concentrate on its direct impact on the school subject "English" and on standards within that subject. Such a discussion must incorporate some consideration of the rise of "Literacy" as a dominant term and theme in England (and globally) and its challenge to a politically controversial and much contested curriculum area, i.e. "English". If the Framework is considered within the context of the Literacy drive since the mid-1990s then it can be see to be evolving within a much changed policy context and therefore likely to change substantially in the next few years. In a global context England has been regarded for some time as at the extreme edge of standards-driven policy and practice. It is hoped that the story of "English" in England may be salutary to educators from other countries.
Resumo:
The problem of planning multiple vehicles deals with the design of an effective algorithm that can cause multiple autonomous vehicles on the road to communicate and generate a collaborative optimal travel plan. Our modelling of the problem considers vehicles to vary greatly in terms of both size and speed, which makes it suboptimal to have a faster vehicle follow a slower vehicle or for vehicles to drive with predefined speed lanes. It is essential to have a fast planning algorithm whilst still being probabilistically complete. The Rapidly Exploring Random Trees (RRT) algorithm developed and reported on here uses a problem specific coordination axis, a local optimization algorithm, priority based coordination, and a module for deciding travel speeds. Vehicles are assumed to remain in their current relative position laterally on the road unless otherwise instructed. Experimental results presented here show regular driving behaviours, namely vehicle following, overtaking, and complex obstacle avoidance. The ability to showcase complex behaviours in the absence of speed lanes is characteristic of the solution developed.
Resumo:
Planning is one of the key problems for autonomous vehicles operating in road scenarios. Present planning algorithms operate with the assumption that traffic is organised in predefined speed lanes, which makes it impossible to allow autonomous vehicles in countries with unorganised traffic. Unorganised traffic is though capable of higher traffic bandwidths when constituting vehicles vary in their speed capabilities and sizes. Diverse vehicles in an unorganised exhibit unique driving behaviours which are analysed in this paper by a simulation study. The aim of the work reported here is to create a planning algorithm for mixed traffic consisting of both autonomous and non-autonomous vehicles without any inter-vehicle communication. The awareness (e.g. vision) of every vehicle is restricted to nearby vehicles only and a straight infinite road is assumed for decision making regarding navigation in the presence of multiple vehicles. Exhibited behaviours include obstacle avoidance, overtaking, giving way for vehicles to overtake from behind, vehicle following, adjusting the lateral lane position and so on. A conflict of plans is a major issue which will almost certainly arise in the absence of inter-vehicle communication. Hence each vehicle needs to continuously track other vehicles and rectify plans whenever a collision seems likely. Further it is observed here that driver aggression plays a vital role in overall traffic dynamics, hence this has also been factored in accordingly. This work is hence a step forward towards achieving autonomous vehicles in unorganised traffic, while similar effort would be required for planning problems such as intersections, mergers, diversions and other modules like localisation.
Resumo:
Currently UK fruit and vegetable intakes are below recommendations. Bread is a staple food consumed by ~95% of adults in western countries. In addition, bread provides an ideal matrix by which functionality can be delivered to the consumer in an accepted food. Therefore, enriching bread with vegetables may be an effective strategy to increase vegetable consumption. This study evaluated consumer acceptance, purchase intent and intention of product replacement of bread enriched with red beetroot, carrot with coriander, red pepper with tomato or white beetroot (80g vegetable per serving of 200g) compared to white control bread (0g vegetable). Consumers (n=120) rated their liking of the breads overall, as well as their liking of appearance, flavour and texture using nine-point hedonic scales. Product replacement and purchase intent of the breads was rated using five-point scales. The effect of providing consumers with health information about the breads was also evaluated. There were significant differences in overall liking (P<0.0001), as well as liking of appearance (P<0.0001), flavour (P=0.0002) and texture (P=0.04), between the breads. However, the significant differences resulted from the red beetroot bread which was significantly (P<0.05) less liked compared to control bread. There were no significant differences in overall liking between any of the other vegetable-enriched breads compared with the control bread (no vegetable inclusion), apart from the red beetroot bread which was significantly less liked. The provision of health information about the breads did not increase consumer liking of the vegetable-enriched breads. In conclusion, this study demonstrated that vegetable-enriched bread appeared to be an acceptable strategy to increase vegetable intake, however, liking depended on vegetable type.
Resumo:
Almost all modern cars can be controlled remotely using a personal communicator (keyfob). However, the degree of interaction between currently available personal communicators and cars is very limited. The communication link is unidirectional and the communication range is limited to a few dozen meters. However, there are many interesting applications that could be supported if a keyfob would be able to support energy efficient bidirectional longer range communication. In this paper we investigate off-the-shelf transceivers in terms of their usability for bidirectional longer range communication. Our evaluation results show that existing transceivers can generally support the required communication ranges but that links tend to be very unreliable. This high unreliability must be handled in an energy efficient way by the keyfob to car communication protocol in order to make off-the-shelf transceivers a viable solution.
Resumo:
Near-ground maneuvers, such as hover, approach, and landing, are key elements of autonomy in unmanned aerial vehicles. Such maneuvers have been tackled conventionally by measuring or estimating the velocity and the height above the ground, often using ultrasonic or laser range finders. Near-ground maneuvers are naturally mastered by flying birds and insects because objects below may be of interest for food or shelter. These animals perform such maneuvers efficiently using only the available vision and vestibular sensory information. In this paper, the time-tocontact (tau) theory, which conceptualizes the visual strategy with which many species are believed to approach objects, is presented as a solution for relative ground distance control for unmanned aerial vehicles. The paper shows how such an approach can be visually guided without knowledge of height and velocity relative to the ground. A control scheme that implements the tau strategy is developed employing only visual information from a monocular camera and an inertial measurement unit. To achieve reliable visual information at a high rate, a novel filtering system is proposed to complement the control system. The proposed system is implemented onboard an experimental quadrotor unmannedaerial vehicle and is shown to not only successfully land and approach ground, but also to enable the user to choose the dynamic characteristics of the approach. The methods presented in this paper are applicable to both aerial and space autonomous vehicles.
Resumo:
This paper addresses the challenging domain of vehicle classification from pole-mounted roadway cameras, specifically from side-profile views. A new public vehicle dataset is made available consisting of over 10000 side profile images (86 make/model and 9 sub-type classes). 5 state-of-the-art classifiers are applied to the dataset, with the best achieving high classification rates of 98.7% for sub-type and 99.7- 99.9% for make and model recognition, confirming the assertion made that single vehicle side profile images can be used for robust classification.