915 resultados para Vacuum-tubes.
Resumo:
The electrical and optical characteristics of a cylindrical alumina insulator (94% Al203) have been measured under ultra-high vacuum (P < 10-8 mBar) conditions. A high-resolution CCD camera was used to make real-time optical recordings of DC prebreakdown luminescence from the ceramic, under conditions where DC current magnitudes were limited to less than 50μA. Two concentric metallized rings formed a pair of co-axial electrodes, on the end-face of the alumina tube; a third 'transparent' electrode was employed to study the effect of an orthogonal electric field upon the radial conduction processes within the metallized alumina specimen. The wavelength-spectra of the emitted light was quantified using a high-speed scanning monochromator and photo-multiplier tube detector. Concurrent electrical measurements were made alongside the recording of optical-emission images. An observed time-dependence of the photon-emission is correlated with a time-variation observed in the DC current-voltage characteristics of the alumina. Optical images were also recorded of pulsed-field surface-flashover events on the alumina ceramic. An intensified high-speed video technique provided 1ms frames of surface-flashover events, whilst 100ns frames were achieved using an ultra high-speed fast-framing camera. By coupling this fast-frame camera to a digital storage oscilloscope, it was possible to establish a temporal correlation between the application of a voltage-pulse to the ceramic and the evolution of photonic emissions from the subsequent surface-flashover event. The electro-optical DC prebreakdown characteristics of the alumina are discussed in terms of solid-state photon-emission processes, that are believed to arise from radiative electron-recombination at vacancy-defects and substitutional impurity centres within the surface-layers of the ceramic. The physical nature of vacancy-defects within an alumina dielectric is extensively explored, with a particular focus placed upon the trapped electron energy-levels that may be present at these defect centres. Finally, consideration is given to the practical application of alumina in the trigger-ceramic of a sealed triggered vacuum gap (TVG) switch. For this purpose, a physical model describing the initiation of electrical breakdown within the TVG regime is proposed, and is based upon the explosive destabilisation of trapped charge within the alumina ceramic, triggering the onset of surface-flashover along the insulator. In the main-gap prebreakdown phase, it is suggested that the electrical-breakdown of the TVG is initiated by the low-field 'stripping' of prebreakdown electrons from vacancy-defects in the ceramic under the influence of an orthogonal main-gap electric field.
Resumo:
An ultra high vacuum system capable of attaining pressures of 10-12 mm Hg was used for thermal desorption experiments. The metal chosen for these experiments was tantalum because of its suitability for thermal desorption experiments and because relatively little work has been done using this metal. The gases investigated were carbon monoxide, hydrogen and ethylene. The kinetic and thermodynamic parameters relating to the desorption reaction were calculated and the values obtained related to the reaction on the surface. The thermal desorption reaction was not capable of supplying all the information necessary to form a complete picture of the desorption reaction. Further information was obtained by using a quadrupole mass spectrometer to analyse the desorbed species. The identification of the desorbed species combined with the value of the desorption parameters meant that possible adatom structures could be postulated. A combination of these two techniques proved to be a very powerful tool when investigating gas-metal surface reactions and gave realistic values for the measured parameters such as the surface coverage, order of reaction, the activation energy and pre-exponential function for desorption. Electron microscopy and X-ray diffraction were also used to investigate the effect of the gases on the metal surface.
Resumo:
Doubt is cast on the much quoted results of Yakupov that the torsion vector in embedding class two vacuum space-times is necessarily a gradient vector and that class 2 vacua of Petrov type III do not exist. The rst result is equivalent to the fact that the two second fundamental forms associated with the embedding necessarily commute and has been assumed in most later investigations of class 2 vacuum space-times. Yakupov stated the result without proof, but hinted that it followed purely algebraically from his identity: Rijkl Ckl = 0 where Cij is the commutator of the two second fundamental forms of the embedding.From Yakupov's identity, it is shown that the only class two vacua with non-zero commutator Cij must necessarily be of Petrov type III or N. Several examples are presented of non-commuting second fundamental forms that satisfy Yakupovs identity and the vacuum condition following from the Gauss equation; both Petrov type N and type III examples occur. Thus it appears unlikely that his results could follow purely algebraically. The results obtained so far do not constitute denite counter-examples to Yakupov's results as the non-commuting examples could turn out to be incompatible with the Codazzi and Ricci embedding equations. This question is currently being investigated.
Resumo:
Titanium nitride (TiN) thin films are coated on HT-9 and MA957 fuel cladding tubes and bars to explore their mechanical strength, thermal stability, diffusion barrier properties, and thermal conductivity properties. The ultimate goal is to implement TiN as an effective diffusion barrier to prevent the inter-diffusion between the nuclear fuel and the cladding material, and thus lead to a longer lifetime of the cladding tubes. Mechanical tests including hardness and scratch tests for the samples before and after thermal cycle tests show that the films have a high hardness of 28GPa and excellent adhesion properties despite the thermal treatment. Thermal conductivity measurements demonstrate that the thin TiN films have very minimal impact on the overall thermal conductivity of the MA957 and HT-9 substrates, i.e., the thermal conductivity of the uncoated HT-9 and MA957 substrates was 26.25 and 28.44 W m-1 K-1, and that of the coated ones was 26.21 and 28.38W m-1 K-1, respectively. A preliminary Ce diffusion test on the couple of Ce/TiN/HT-9 suggests that TiN has excellent material compatibility and good diffusion barrier properties.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Fatigue crack growth rate tests have been performed on Nimonic AP1, a powder formed Ni-base superalloy, in air and vacuum at room temperature. These show that threshold values are higher, and near-threshold (faceted) crack growth rates are lower, in vacuum than in air, although at high growth rates, in the “structure-insensitive” regime, R-ratio and a dilute environment have little effect. Changing the R-ratio from 0.1 to 0.5 in vacuum does not alter near-threshold crack growth rates very much, despite more extensive secondary cracking being noticeable at R= 0.5. In vacuum, rewelding occurs at contact points across the crack as ΔK falls. This leads to the production of extensive fracture surface damage and bulky fretting debris, and is thought to be a significant contributory factor to the observed increase in threshold values.
Resumo:
AMS Subj. Classification: 83C15, 83C35
Resumo:
The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.
Resumo:
One of the many promising applications of metal/ceramic joining is in biomedical implantable devices. This work is focused on vacuum brazing of C.P titanium to 96% alumina ceramic using pure gold as the filler metal. A novel method of brazing is developed where resistance heating of C.P titanium is done inside a thermal evaporator using a Ta heating electrode. The design of electrode is optimized using Ansys resistive heating simulations. The materials chosen in this study are biocompatible and have prior history in implantable devices approved by FDA. This research is part of Boston Retinal implant project to make a biocompatible implantable device (www.bostonretina.org). ^ Pure gold braze has been used in the construction of single terminal feedthrough in low density hermetic packages utilizing a single platinum pin brazed to an alumina or sapphire ceramic donut (brazed to a titanium case or ferrule for many years in implantable pacemakers. Pure gold (99.99%) brazing of 96% alumina ceramic with CP titanium has been performed and evaluated in this dissertation. Brazing has been done by using electrical resistance heating. The 96% alumina ceramic disk was manufactured by high temperature cofired ceramic (HTCC) processing while the Ti ferrule and gold performs were purchased from outside. Hermetic joints having leak rate of the order of 1.6 × 10-8 atm-cc/ sec on a helium leak detector were measured. ^ Alumina ceramics made by HTCC processing were centreless grounded utilizing 800 grit diamond wheel to provide a smooth surface for sputtering of a thin film of Nb. Since pure alumina demonstrates no adhesion or wetting to gold, an adhesion layer must be used on the alumina surface. Niobium (Nb), Tantalum (Ta) and Tungsten (W) were chosen for evaluation since all are refractory (less dissolution into molten gold), all form stable oxides (necessary for adhesion to alumina) and all are readily thin film deposited as metals. Wetting studies are also performed to determine the wetting angle of pure gold to Ti, Ta, Nb and W substrates. Nano tribological scratch testing of thin film of Nb (which demonstrated the best wetting properties towards gold) on polished 96% alumina ceramic is performed to determine the adhesion strength of thin film to the substrate. The wetting studies also determined the thickness of the intermetallic compounds layers formed between Ti and gold, reaction microstructure and the dissolution of the metal into the molten gold.^
Resumo:
Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.