998 resultados para Uranium oxides.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of ceramic material as refractories in the manufacturing industry is a common practice worldwide. During usage, for example in the production of steel, these materials do experience severe working conditions including high temperatures, low pressures and corrosive environments. This results in lowered service lives and high consumptions of these materials. This, in turn, affects the productivity of the whole steel plant and thereby the cost. In order to investigate how the service life can be improved, studies have been carried out for refractories used in the inner lining of the steel ladles. More specifically, from the slag zone, where the corrosion is most severe. By combining thermodynamic simulations, plant trails and post-mortem studies of the refractories after service, vital information about the behaviour of the slagline refractories during steel refining and the causes of the accelerated wear in this ladle area has been achieved. The results from these studies show that the wear of the slagline refractories of the ladle is initiated at the preheating station, through reduction-oxidation reactions. The degree of the decarburization process is mostly dependent on the preheating fuel or the environment. For refractories without antioxidants, refractory decarburization is slower when coal gas is used in ladle preheating than when a mixture of oil and air is used. In addition, ladle preheating of the refractories without antioxidants leads to direct wear of the slagline refractories. This is due to the total loss of the matrix strength, which results in a sand-like product. Thermal chemical changes that take place in the slagline refractories are due to the MgO-C reaction as well as the formation of liquid phases from impurity oxides. In addition, the decrease in the system pressure during steel refining makes the MgO-C reaction take place at the steel refining temperatures. This reduces the refractory’s resistance to corrosion. This is a serious problem for both the magnesia-carbon and dolomite-carbon refractories. The studies of the reactions between the slagline refractories and the different slag compositions showed that slags rich in iron oxide lead mostly to the oxidation of carbon/graphite in the carbon-containing refractories. This leads to an increased porosity and wettability and therefore an enhanced penetration of slag into the refractory structure. If the slag contains high contents of alumina and or silica (such as the steel refining slag), reactions between the slag components and the dolomite-carbon refractory are promoted. This leads to the formation of low-temperature melting phases such as calcium-aluminates and silicates. The state of these reaction products during steel refining leads to an accelerated wear of the dolomite-carbon refractory. The main products of the reactions between the magnesia-carbon refractory and the steel refining slag are MgAl2O4 spinels, and calcium-aluminates, and silicates. Due to the good refractory properties of MgAl2O4 spinels, the slag corrosion resistance of the magnesiacarbon refractory is promoted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of the previously reported diorganotellurium oxides R2TeO (R = Ph (1) and p-MeOC6H4 (2)) was revisited by osmometric molecular weight determinations, 125Te NMR spectroscopy, and electrospray spectrometry (ESMS) in solution and by 125Te MAS NMR spectroscopy in the solid state. The single-crystal X-ray structure of 2 revealed a polymeric arrangement that features a zigzag configured Te-O backbone without any secondary Te···O interactions. In solution 1 and 2 exist predominantly as monomers but appear to be in equilibrium with higher oligomers to a minor extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound was prepared by base hydrolysis of (p-MeOC6H4)2SeCl2 in water and isolated as the crystalline monohydrate, (p-MeOC6H4)2SeO·H2O, in which the water molecule is associated via hydrogen-bonding. Water-free (p-MeOC6H4)2SeO was obtained crystalline after drying and recrystallisation from toluene. Both crystal phases were investigated by single crystal X-ray diffraction. Preliminary DFT calculations at the B3LYP/LANL2DZdp level of theory suggest that the hydrogen bonded complexes R2SeO·H2O (R = H, Me, Ph) are by 2.79, 3.36 and 11.10 kcal mol-1 more stable than the corresponding elusive diorganoselenium dihydroxides R2Se(OH)2. The hydrogen bond energies of R2SeO·H2O (R = H, Me, Ph) are 5.98, 7.18 and 5.89 kcal mol-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple model was developed for the approximation of ring strain energies of homo- and heterometallic, six- and eight-membered cyclic organometallic group 14 oxides and the degree of puckering of their ring conformations. The conformational energy of a ring is modelled as the sum of its angular strain components. The bending potential energy functions for the various endocyclic M–O–M′ and O–M–O linkages (M, M′=Si, Ge, Sn) were calculated at the B3LYP/(v)TZ level of theory using H3MOM′H3 and H2M(OH)2 as model compounds. For the six-membered rings, the minimum total angular contribution to ring strain, ERSGmin was calculated to decrease in the order: cyclo-(H2SiO)3 (13.0 kJ mol−1)>cyclo-H2Sn(OSiH2)2O (7.0 kJ mol−1)>cyclo-H2Ge(OSiH2)2O (4.9 kJ mol−1)>cyclo-H2Si(OSnH2)2O (3.4 kJ mol−1)>cyclo-(H2SnO)3 (1.7 kJ mol−1)>cyclo-H2Si(OGeH2)2O (0.8 kJ mol−1)≈cyclo-H2Ge(OSnH2)2O (0.7 kJ mol−1)>cyclo-H2Sn(OGeH2)2O (0.1 kJ mol−1)≈cyclo-(H2GeO)3 (0 kJ mol−1). All of the six-membered rings were predicted to adopt (nearly) planar conformations (a=0.996<a<1). By contrast, all eight-membered rings were predicted to adopt strainless, but puckered conformations. The degree of puckering was predicted to increase in the order: cyclo-(H2SiO)4 (a=0.983)<cyclo-H2Sn(OSiH2O)2SiH2 (a=0.959)<cyclo-(H2SiO)2(H2SnO)2 (a=0.942)< cyclo-H2Si(OSnH2O)2SiH2 (a=0.935)<cyclo-(H2SnO)4 (a=0.916)<cyclo-(H2GeO)4 (a=0.885). The differences in ring strain and the degree of puckering were linked to the different electronegativities of Si, Ge and Sn. The results obtained are consistent with experimental ring strain energies; reactivities towards ring opening polymerizations or ring expansion reactions and observed ring conformations of cyclic organometallic group 14 oxides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photochemical degradation of dissolved organic matter (DOM) can influence food webs by altering the availability of carbon to microbial communities, and may be particularly important following periods of high DOM input (e.g. flooding of forested floodplains). Iron oxides can facilitate these reactions, but their influence on subsequent organic products is poorly understood. Degradation experiments with billabong (= oxbow lake) water and river red gum (Eucalyptus camaldulensis) leaf leachate were conducted to assess the importance of these reactions in floodplain systems. Photochemical degradation of DOM in sunlight-irradiated quartz tubes (with and without amorphous iron oxide) was studied using gas chromatography and UV-visible spectroscopy. Photochemical reactions generated gaseous products and small organic acids. Bioavailability of billabong DOM increased following irradiation, whereas that of leaf leachate was not significantly altered. Fluorescence excitation-emission spectra suggested that the humic component of billabong organic matter was particularly susceptible to degradation, and the source of DOM influenced the changes observed. The addition of amorphous iron oxide increased rates of photochemical degradation of leachate and billabong DOM. The importance of photochemical reactions to aquatic systems will depend on the source of the DOM and its starting bioavailability, whereas inputs of freshly formed iron oxides will accelerate the processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of the diorganotellurium oxides R2TeO (R = Ph, p-MeOC6H4, p-Me2NC6H4) with phenol and o-nitrophenol produces diorganotellurium hydroxy phenolates, R2Te(OH)OPh (1, R = Ph; 2, R = p-MeOC6H4; 3, R = p-Me2NC6H4), diorganotellurium bis(phenolates) R2Te(OPh)2 (4, R = Ph; 5, R = p-MeOC6H4; 6, R = p-Me2NC6H4), tetraorganoditelluroxane bis(o-nitrophenolates), (R′O)R2TeOTeR2(OR′) (7, R = p-MeOC6H4; 8, R = p-Me2NC6H4; R′ = o-NO2C6H4), and a hexaphenyltritelluroxane bis(o-nitrophenolate) (R′O)Ph2TeOTePh2OTePh2(OR′) (9, R′ = o-NO2C6H4), respectively. The redistribution reactions of R2Te(OPh)2 (4, R = Ph; 5, R = p-MeOC6H4; 6, R = p-Me2NC6H4) with the corresponding diorganotellurium oxides R2TeO and diorganotellurium dichlorides R2TeCl2 (R = Ph, p-MeOC6H4, p-Me2NC6H4) give rise to the formation of moisture sensitive tetraorganoditelluroxane bis(phenolates) (PhO)R2TeOTeR2(OPh) (10, R = Ph; 11, R = p-MeOC6H4; 12, R = p-Me2NC6H4) and diorganotellurium chloro phenolates, R2Te(Cl)OPh (13, R = Ph; 14, R = p-MeOC6H4; 15, R = p-Me2NC6H4), respectively. The reaction of the diorganotellurium oxides R2TeO with the corresponding diorganotellurium dichlorides R2TeCl2 (R = Ph, p-MeOC6H4, p-Me2NC6H4) affords tetraorganoditelluroxane dichlorides ClR2TeOTeR2Cl (16, R = Ph; 17, R = p-MeOC6H4; 18, R = p-Me2NC6H4) as air-stable solid materials. The reactivity of 1–18 can be rationalized by the kinetic lability of the Te–O and Te–Cl bonds. Compounds 1–18 have been characterized by solution and solid-state 125Te NMR spectroscopy and 2, 4, 6, 7, 9, 17, and 18 have also been analyzed by X-ray crystallography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantification of uranium in human urine is a valuable technique for assessing occupational and public exposure to uranium. A reliable method has been developed and validated in the ARPANSA Radiochemistry Laboratory by means of standard radiochemical separation and purification techniques and measurement using high-resolution alpha spectrometry. This method can be used to evaluate the levels of naturally occurring 234U, 235U and 238U in urine. Method design and validation is the process of defining an analytical requirement, and then confirming that the method under consideration has performance capabilities consistent with what the application requires. The method was designed to measure levels down to 2 mBq/day of total uranium, corresponding to approximately 1/100th of the annual committed effective dose of 20 mSv. Validation tests were developed to assess selectivity, accuracy, recovery and quantification of uncertainty. The radiochemical recovery of this method was measured using 232U tracer. The typical minimum detectable concentration for total uranium for 24-h urine samples is approximately 0.6 mBq/day or 0.019 μg/day.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The types and levels of nine major cholesterol oxidation products was determined in a variety of foods. An estimate was made of the possible levels of cholesterol oxides in the Australian diet. These levels have been shown to cause endothelial damage in the coronary arteries of laboratory animals in previous studies. The health implications of these observations to humans is unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1706 files in 35 folders, containing 388MB. Comprises plots, figures, and manuscripts. The data contains x-ray diffraction patterns and electrochemical data of lanthanum based perovskite oxides (e.g. 9 different perovskite compositions e.g. LaNiO3, LaCoO3, LaFeO3, LaMnO3, LaCrO3, LaNi0.5Co0.5O3 and LaNi0.5Fe0.5O3, LaNi0.5Mn0.5O3 and LaNi0.5Cr0.5O3) characterized using rotating ring disk electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method to synthesize conducting oxide nanoparticles with low photocatalytic activity was investigated. Initially, the preparation of amorphous ZnO-SnO2 solid solution nanoparticles was studied using a sol-gel technique. It was found that X-ray amorphous nanopowders with low photocatalytic activity were produced when the precipitates were heat treated below 500 °C. However, FT-IR data showed that the sample may not be an oxide semiconductor. A mixture of ZnO and SnO2 crystalline nanoparticles was also produced at 800 °C and found to have much reduced photoactivity than commercial ZnO nanoparticles having a similar specific surface area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO nanoparticles doped with up to 5 at% of Co and Mn were prepared using a co-precipitation method. The location of dopant ions and the effect of doping on the photocatalytic activity were investigated. The crystal structure of nanoparticles and local atomic arrangements around dopant ions were analyzed by X-ray absorption spectroscopy. The results showed that the Co ions substituted the Zn ions in the ZnO wurtzite phase structure and induced lattice shrinkage, while Mn ions were not completely incorporated in the crystal lattice. The photocatalytic activity under simulated sunlight was characterized by the decomposition of Rhodamine B dye molecules. It was revealed that Co-doping strongly reduced the photocatalytic activity but Mn-doping showed a weaker effect on the reduction of the photoactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, LaMO3 and LaNi0.5M0.5O3 (M = Ni, Co, Fe, Mn and Cr) perovskite oxide electrocatalysts were synthesized by a combined ethylenediaminetetraacetic acid-citrate complexation technique and subsequent calcinations at 1000 °C in air. Their powder X-ray diffraction patterns demonstrate the formation of a specific crystalline structure for each composition. The catalytic property of these materials toward the oxygen reduction reaction (ORR) was studied in alkaline potassium hydroxide solution using the rotating disk and rotating ring-disk electrode techniques. Carbon is considered to be a crucial additive component because its addition into perovskite oxide leads to optimized ORR current density. For LaMO3 (M = Ni, Co, Fe, Mn and Cr)), in terms of the ORR current densities, the performance is enhanced in the order of LaCrO3, LaFeO3, LaNiO3, LaMnO3, and LaCoO3. For LaNi0.5M0.5O3, the ORR current performance is enhanced in the order of LaNi0.5Fe0.5O3, LaNi0.5Co0.5O3, LaNi0.5Cr0.5O3, and LaNi0.5Mn0.5O3. Overall, LaCoO3 demonstrates the best performance. Most notably, substituting half of the nickel with cobalt, iron, manganese, or chromium translates the ORR to a more positive onset potential, suggesting the beneficial catalytic effect of two transition metal cations with Mn as the most promising candidate. Koutecky–Levich analysis on the ORR current densities of all compositions indicates that the four-electron pathway is favored on these oxides, which are consistent with hydroperoxide ion formation of <2%.