999 resultados para Universal Decimal Classification
Resumo:
Background: Development of three classification trees (CT) based on the CART (Classification and Regression Trees), CHAID (Chi-Square Automatic Interaction Detection) and C4.5 methodologies for the calculation of probability of hospital mortality; the comparison of the results with the APACHE II, SAPS II and MPM II-24 scores, and with a model based on multiple logistic regression (LR). Methods: Retrospective study of 2864 patients. Random partition (70:30) into a Development Set (DS) n = 1808 and Validation Set (VS) n = 808. Their properties of discrimination are compared with the ROC curve (AUC CI 95%), Percent of correct classification (PCC CI 95%); and the calibration with the Calibration Curve and the Standardized Mortality Ratio (SMR CI 95%). Results: CTs are produced with a different selection of variables and decision rules: CART (5 variables and 8 decision rules), CHAID (7 variables and 15 rules) and C4.5 (6 variables and 10 rules). The common variables were: inotropic therapy, Glasgow, age, (A-a)O2 gradient and antecedent of chronic illness. In VS: all the models achieved acceptable discrimination with AUC above 0.7. CT: CART (0.75(0.71-0.81)), CHAID (0.76(0.72-0.79)) and C4.5 (0.76(0.73-0.80)). PCC: CART (72(69- 75)), CHAID (72(69-75)) and C4.5 (76(73-79)). Calibration (SMR) better in the CT: CART (1.04(0.95-1.31)), CHAID (1.06(0.97-1.15) and C4.5 (1.08(0.98-1.16)). Conclusion: With different methodologies of CTs, trees are generated with different selection of variables and decision rules. The CTs are easy to interpret, and they stratify the risk of hospital mortality. The CTs should be taken into account for the classification of the prognosis of critically ill patients.
Resumo:
Near-infrared spectroscopy (NIRS) was used to analyse the crude protein content of dried and milled samples of wheat and to discriminate samples according to their stage of growth. A calibration set of 72 samples from three growth stages of wheat (tillering, heading and harvest) and a validation set of 28 samples was collected for this purpose. Principal components analysis (PCA) of the calibration set discriminated groups of samples according to the growth stage of the wheat. Based on these differences, a classification procedure (SIMCA) showed a very accurate classification of the validation set samples : all of them were successfully classified in each group using this procedure when both the residual and the leverage were used in the classification criteria. Looking only at the residuals all the samples were also correctly classified except one of tillering stage that was assigned to both tillering and heading stages. Finally, the determination of the crude protein content of these samples was considered in two ways: building up a global model for all the growth stages, and building up local models for each stage, separately. The best prediction results for crude protein were obtained using a global model for samples in the two first growth stages (tillering and heading), and using a local model for the harvest stage samples.
Resumo:
Aquest comentari analitza la sentència del Tribunal Superior de Justícia de Catalunya de 29 de desembre de 2008, que crea jurisprudència. A la sentència el Tribunal Superior determina el caràcter revisable i revocable, per part dels tribunals de justícia, de la interpretació que realitza el marmessor universal de les clàusules testamentàries.
Resumo:
Many classification systems rely on clustering techniques in which a collection of training examples is provided as an input, and a number of clusters c1,...cm modelling some concept C results as an output, such that every cluster ci is labelled as positive or negative. Given a new, unlabelled instance enew, the above classification is used to determine to which particular cluster ci this new instance belongs. In such a setting clusters can overlap, and a new unlabelled instance can be assigned to more than one cluster with conflicting labels. In the literature, such a case is usually solved non-deterministically by making a random choice. This paper presents a novel, hybrid approach to solve this situation by combining a neural network for classification along with a defeasible argumentation framework which models preference criteria for performing clustering.
Resumo:
The application of statistics to science is not a neutral act. Statistical tools have shaped and were also shaped by its objects. In the social sciences, statistical methods fundamentally changed research practice, making statistical inference its centerpiece. At the same time, textbook writers in the social sciences have transformed rivaling statistical systems into an apparently monolithic method that could be used mechanically. The idol of a universal method for scientific inference has been worshipped since the "inference revolution" of the 1950s. Because no such method has ever been found, surrogates have been created, most notably the quest for significant p values. This form of surrogate science fosters delusions and borderline cheating and has done much harm, creating, for one, a flood of irreproducible results. Proponents of the "Bayesian revolution" should be wary of chasing yet another chimera: an apparently universal inference procedure. A better path would be to promote both an understanding of the various devices in the "statistical toolbox" and informed judgment to select among these.
Resumo:
The objective of this work was to develop and validate a set of clinical criteria for the classification of patients affected by periodic fevers. Patients with inherited periodic fevers (familial Mediterranean fever (FMF); mevalonate kinase deficiency (MKD); tumour necrosis factor receptor-associated periodic fever syndrome (TRAPS); cryopyrin-associated periodic syndromes (CAPS)) enrolled in the Eurofever Registry up until March 2013 were evaluated. Patients with periodic fever, aphthosis, pharyngitis and adenitis (PFAPA) syndrome were used as negative controls. For each genetic disease, patients were considered to be 'gold standard' on the basis of the presence of a confirmatory genetic analysis. Clinical criteria were formulated on the basis of univariate and multivariate analysis in an initial group of patients (training set) and validated in an independent set of patients (validation set). A total of 1215 consecutive patients with periodic fevers were identified, and 518 gold standard patients (291 FMF, 74 MKD, 86 TRAPS, 67 CAPS) and 199 patients with PFAPA as disease controls were evaluated. The univariate and multivariate analyses identified a number of clinical variables that correlated independently with each disease, and four provisional classification scores were created. Cut-off values of the classification scores were chosen using receiver operating characteristic curve analysis as those giving the highest sensitivity and specificity. The classification scores were then tested in an independent set of patients (validation set) with an area under the curve of 0.98 for FMF, 0.95 for TRAPS, 0.96 for MKD, and 0.99 for CAPS. In conclusion, evidence-based provisional clinical criteria with high sensitivity and specificity for the clinical classification of patients with inherited periodic fevers have been developed.
Resumo:
BACKGROUND: Frequent emergency department users represent a small number of patients but account for a large number of emergency department visits. They should be a focus because they are often vulnerable patients with many risk factors affecting their quality of life (QoL). Case management interventions have resulted in a significant decrease in emergency department visits, but association with QoL has not been assessed. One aim of our study was to examine to what extent an interdisciplinary case management intervention, compared to standard emergency care, improved frequent emergency department users' QoL. METHODS: Data are part of a randomized, controlled trial designed to improve frequent emergency department users' QoL and use of health-care resources at the Lausanne University Hospital, Switzerland. In total, 250 frequent emergency department users (≥5 attendances during the previous 12 months; ≥ 18 years of age) were interviewed between May 2012 and July 2013. Following an assessment focused on social characteristics; social, mental, and somatic determinants of health; risk behaviors; health care use; and QoL, participants were randomly assigned to the control or the intervention group (n=125 in each group). The final sample included 194 participants (20 deaths, 36 dropouts, n=96 in the intervention group, n=99 in the control group). Participants in the intervention group received a case management intervention by an interdisciplinary, mobile team in addition to standard emergency care. The case management intervention involved four nurses and a physician who provided counseling and assistance concerning social determinants of health, substance-use disorders, and access to the health-care system. The participants' QoL was evaluated by a study nurse using the WHOQOL-BREF five times during the study (at baseline, and at 2, 5.5, 9, and 12 months). Four of the six WHOQOL dimensions of QoL were retained here: physical health, psychological health, social relationship, and environment, with scores ranging from 0 (low QoL) to 100 (high QoL). A linear, mixed-effects model with participants as a random effect was run to analyze the change in QoL over time. The effects of time, participants' group, and the interaction between time and group were tested. These effects were controlled for sociodemographic characteristics and health-related variables (i.e., age, gender, education, citizenship, marital status, type of financial resources, proficiency in French, somatic and mental health problems, and behaviors at risk).