926 resultados para Transcranial direct current stimulation
Resumo:
Here we report a novel steroid-like compound F90363, exhibiting positive inotropy in vivo and in vitro in various cardiac muscle preparations. F90363 is a racemic mixture composed of the stereoisomers (-)-F90926 and (+)-F90927. Only F90927 exerted positive inotropy, while F90926 induced a weak negative inotropy, but only at concentrations 10(3) times higher than F90927 and most likely resulting from an unspecific interaction. The rapid time course of the action of F90927 suggested a direct interaction with a cellular target rather than a genomic alteration. We could identify the L-type Ca2+ current I(Ca(L)) as a main target of F90927, while excluding other components of cardiac Ca2+ signalling as potential contributors. In addition, several other signaling pathways known to lead to positive inotropy (e.g. alpha- and beta-adrenergic stimulation, cAMP pathways) could be excluded as targets of F90927. However, vessel contraction and stiffening of the cardiac muscle at high doses (>30 microM, 0.36 mg kg(-1), respectively) prevent the use of F90927 as a candidate for drug development. Since the compound may still find valuable applications in research, the aim of the present study was to identify the cellular target and the mechanism of inotropy of F90927.
Resumo:
Recovery from eye movement deficits after cortical lesions is amazingly rapid and almost complete, which is in sharp contrast to most other neurological deficits of cerebral lesions. The underlying mechanisms of this successful recovery remain uncertain. We had the rare opportunity to examine two patients with recovery from saccade deficits after a lesion restricted to the frontal eye field (FEF) by means of transcranial magnetic stimulation (TMS). The results provide direct evidence that recovery depended on the integrity of the oculomotor regions of the nonlesioned contralesional hemisphere, and that the compensatory network is task-specific.
Resumo:
Cu is an essential nutrient for man, but can be toxic if intakes are too high. In sensitive populations, marginal over- or under-exposure can have detrimental effects. Malnourished children, the elderly, and pregnant or lactating females may be susceptible for Cu deficiency. Cu status and exposure in the population can currently not be easily measured, as neither plasma Cu nor plasma cuproenzymes reflect Cu status precisely. Some blood markers (such as ceruloplasmin) indicate severe Cu depletion, but do not inversely respond to Cu excess, and are not suitable to indicate marginal states. A biomarker of Cu is needed that is sensitive to small changes in Cu status, and that responds to Cu excess as well as deficiency. Such a marker will aid in monitoring Cu status in large populations, and will help to avoid chronic health effects (for example, liver damage in chronic toxicity, osteoporosis, loss of collagen stability, or increased susceptibility to infections in deficiency). The advent of high-throughput technologies has enabled us to screen for potential biomarkers in the whole proteome of a cell, not excluding markers that have no direct link to Cu. Further, this screening allows us to search for a whole group of proteins that, in combination, reflect Cu status. The present review emphasises the need to find sensitive biomarkers for Cu, examines potential markers of Cu status already available, and discusses methods to identify a novel suite of biomarkers.
Resumo:
Hall thrusters have been under active development around the world since the 1960’s. Thrusters using traditional propellants such as xenon have been flown on a variety of satellite orbit raising and maintenance missions with an excellent record. To expand the mission envelope, it is necessary to lower the specific impulse of the thrusters but xenon and krypton are poor performers at specific impulses below 1,200 seconds. To enhance low specific impulse performance, this dissertation examines the development of a Hall-effect thruster which uses bismuth as a propellant. Bismuth, the heaviest non-radioactive element, holds many advantages over noble gas propellants from an energetics as well as a practical economic standpoint. Low ionization energy, large electron-impact crosssection and high atomic mass make bismuth ideal for low-specific impulse applications. The primary disadvantage lies in the high temperatures which are required to generate the bismuth vapors. Previous efforts carried out in the Soviet Union relied upon the complete bismuth vaporization and gas phase delivery to the anode. While this proved successful, the power required to vaporize and maintain gas phase throughout the mass flow system quickly removed many of the efficiency gains expected from using bismuth. To solve these problems, a unique method of delivering liquid bismuth to the anode has been developed. Bismuth is contained within a hollow anode reservoir that is capped by a porous metallic disc. By utilizing the inherent waste heat generated in a Hall thruster, liquid bismuth is evaporated and the vapors pass through the porous disc into the discharge chamber. Due to the high temperatures and material compatibility requirements, the anode was fabricated out of pure molybdenum. The porous vaporizer was not available commercially so a method of creating a refractory porous plate with 40-50% open porosity was developed. Molybdenum also does not respond well to most forms of welding so a diffusion bonding process was also developed to join the molybdenum porous disc to the molybdenum anode. Operation of the direct evaporation bismuth Hall thruster revealed interesting phenomenon. By utilizing constant current mode on a discharge power supply, the discharge voltage settles out to a stable operating point which is a function of discharge current, anode face area and average pore size on the vaporizer. Oscillations with a 40 second period were also observed. Preliminary performance data suggests that the direct evaporation bismuth Hall thruster performs similar to xenon and krypton Hall thrusters. Plume interrogation with a Retarding Potential Analyzer confirmed that bismuth ions were being efficiently accelerated while Faraday probe data gave a view of the ion density in the exhausted plume.
Resumo:
Interhemispheric imbalance is discussed as a pathophysiological mechanism in visuospatial neglect. It is suggested that after a lesion of the right hemisphere the mutual transcallosal inhibition is impaired, resulting in an increased activity of the left hemisphere. We investigated the interhemispheric balance of attention in healthy subjects by using a free visual exploration task and by interfering with the neural activity of the posterior parietal cortex (PPC) of either hemisphere using an inhibitory transcranial magnetic stimulation routine with theta burst stimulation (TBS). Subjects explored colour photographs of real-life scenes presented on a computer screen under four conditions: (i) without TBS; (ii) after TBS over the right PPC; (iii) after TBS over the left PPC; and (iv) after TBS over the right PPC and, after the first half of the task, over the left PPC. Eye movements were measured, and distribution of mean cumulative fixation duration over screen halves was analyzed. TBS over the right PPC resulted in a significant rightward shift of mean cumulative fixation duration of approximately 30 min. The shift could be reversed when a subsequent train of TBS was applied over the left PPC. However, left PPC stimulation alone had no significant effect on visual exploration behaviour. The present study shows that the effect of TBS on the PPC depends on which hemisphere is stimulated and on the state of the contralateral homologue area. These findings are in accordance with the predictions of the interhemispheric rivalry model in neglect.
Resumo:
PURPOSE: To prospectively quantify in vitro the influence of gadopentetate dimeglumine and ioversol on the magnetic resonance (MR) imaging signal observed with a variety of musculoskeletal pulse sequences to predict optimum gadolinium concentrations for direct MR arthrography at 1.5 and 3.0 T. MATERIALS AND METHODS: In an in vitro study, T1 and T2 relaxation times of three dilution series of gadopentetate dimeglumine (concentration, 0-20.0 mmol gadolinium per liter) at ioversol concentrations with iodine concentration of 0, 236.4, and 1182 mmol iodine per liter (corresponding to 0, 30, and 150 mg of iodine per milliliter) were measured at 1.5 and 3.0 T. The relaxation rate dependence on concentrations of gadolinium and iodine was analytically modeled, and continuous profiles of signal versus gadolinium concentration were calculated for 10 pulse sequences used in current musculoskeletal imaging. After fitting to experimental discrete profiles, maximum signal-to-noise ratio (SNR), gadolinium concentration with maximum SNR, and range of gadolinium concentration with 90% of maximum SNR were derived. The overall influence of field strength and iodine concentration on these parameters was assessed by using t tests. The deviation of simulated from experimental signal-response profiles was assessed with the autocorrelation of the residuals. RESULTS: The model reproduced relaxation rates of 0.37-38.24 sec(-1), with a mean error of 4.5%. Calculated SNR profiles matched the discrete experimental profiles, with autocorrelation of the residuals divided by the mean of less than 5.0. Admixture of ioversol consistently reduced T1 and T2, narrowed optimum gadolinium concentration ranges (P = .004-.006), and reduced maximum SNR (P < .001 to not significant). Optimum gadolinium concentration was 0.7-3.4 mmol/L at both field strengths. At 3.0 T, maximum SNR was up to 75% higher than at 1.5 T. CONCLUSION: Admixture of ioversol to gadopentetate dimeglumine solutions results in a consistent additional relaxation enhancement, which can be analytically modeled to allow a near-quantitative a priori optimized match of contrast media concentrations and imaging protocol for a broad variety of pulse sequences.
Resumo:
BACKGROUND AND PURPOSE: Visual neglect is a frequent disability in stroke and adversely affects mobility, discharge destination, and length of hospital stay. It is assumed that its severity is enhanced by a released interhemispheric inhibition from the unaffected toward the affected hemisphere. Continuous theta burst transcranial magnetic stimulation (TBS) is a new inhibitory brain stimulation protocol which has the potential to induce behavioral effects outlasting stimulation. We aimed to test whether parietal TBS over the unaffected hemisphere can induce a long-lasting improvement of visual neglect by reducing the interhemispheric inhibition. METHODS: Eleven patients with left-sided visual neglect attributable to right hemispheric stroke were tested in a visual perception task. To evaluate the specificity of the TBS effect, 3 conditions were tested: 2 TBS trains over the left contralesional posterior parietal cortex, 2 trains of sham stimulation over the contralesional posterior parietal cortex, and a control condition without any intervention. To evaluate the lifetime of repeated trains of TBS in 1 session, 4 trains were applied over the contralesional posterior parietal cortex. RESULTS: Two TBS trains significantly increased the number of perceived left visual targets for up to 8 hours as compared to baseline. No significant improvement was found with sham stimulation or in the control condition without any intervention. The application of 4 TBS trains significantly increased the number of perceived left targets up to 32 hours. CONCLUSIONS: The new approach of repeating TBS at the same day may be promising for therapy of neglect.
Resumo:
OBJECT: The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. METHODS: Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. RESULTS: Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. CONCLUSIONS: This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.
Resumo:
Plant species richness of permanent grasslands has often been found to be significantly associated with productivity. Concentrations of nutrients in biomass can give further insight into these productivity- plant species richness relationships, e.g. by reflecting land use or soil characteristics. However, the consistency of such relationships across different regions has rarely been taken into account, which might significantly compromise our potential for generalization. We recorded plant species richness and measured above-ground biomass and concentrations of nutrients in biomass in 295 grasslands in three regions in Germany that differ in soil and climatic conditions. Structural equation modelling revealed that nutrient concentrations were mostly indirectly associated with plant species richness via biomass production. However, negative associations between the concentrations of different nutrients and biomass and plant species richness differed considerably among regions. While in two regions, more than 40% of the variation in plant species richness could be attributed to variation in biomass, K, P, and to some degree also N concentrations, in the third region only 15% of the variation could be explained in this way. Generally, highest plant species richness was recorded in grasslands where N and P were co-limiting plant growth, in contrast to N or K (co-) limitation. But again, this pattern was not recorded in the third region. While for two regions land-use intensity and especially the application of fertilizers are suggested to be the main drivers causing the observed negative associations with productivity, in the third region the little variance accounted for, low species richness and weak relationships implied that former intensive grassland management, ongoing mineralization of peat and fluctuating water levels in fen grasslands have overruled effects of current land-use intensity and productivity. Finally, we conclude that regional replication is of major importance for studies seeking general insights into productivity-diversity relationships.
Resumo:
Planar electrodes are increasingly used in therapeutic neural stimulation techniques such as functional electrical stimulation, epidural spinal cord stimulation (ESCS), and cortical stimulation. Recently, optimized electrode geometries have been shown to increase the efficiency of neural stimulation by increasing the variation of current density on the electrode surface. In the present work, a new family of modified fractal electrode geometries is developed to enhance the efficiency of neural stimulation. It is shown that a promising approach in increasing the neural activation function is to increase the "edginess" of the electrode surface, a concept that is explained and quantified by fractal mathematics. Rigorous finite element simulations were performed to compute electric potential produced by proposed modified fractal geometries. The activation of 256 model axons positioned around the electrodes was then quantified, showing that modified fractal geometries required a 22% less input power while maintaining the same level of neural activation. Preliminary in vivo experiments investigating muscle evoked potentials due to median nerve stimulation showed encouraging results, supporting the feasibility of increasing neural stimulation efficiency using modified fractal geometries.
Resumo:
Objective: Identification of the ventrointermediate thalamic nucleus (Vim) in modern 3T high-field MRI for image-based targeting in deep brain stimulation (DBS) is still challenging. To evaluate the usefulness and reliability of analyzing the connectivity with the cerebellum using Q-ball-calculation we performed a retrospective analysis. Method: 5 patients who underwent bilateral implantation of electrodes in the Vim for treatment of Essential Tremor between 2011 and 2012 received additional preoperative Q-ball imaging. Targeting was performed according to atlas coordinates and standard MRI. Additionally we performed a retrospective identification of the Vim by analyzing the connectivity of the thalamus with the dentate nucleus. The exact position of the active stimulation contact in the postoperative CT was correlated with the Vim as it was identified by Q-ball calculation. Results: Localization of the Vim by analysis of the connectivity between thalamus and cerebellum was successful in all 5 patients on both sides. The average position of the active contacts was 14.6 mm (SD 1.24) lateral, 5.37 mm (SD 0.094 posterior and 2.21 mm (SD 0.69) cranial of MC. The cranial portion of the dentato-rubro-thalamic tract was localized an average of 3.38 mm (SD 1.57) lateral and 1.5 mm (SD 1.22) posterior of the active contact. Conclusions: Connectivity analysis by Q-ball calculation provided direct visualization of the Vim in all cases. Our preliminary results suggest, that the target determined by connectivity analysis is valid and could possibly be used in addition to or even instead of atlas based targeting. Larger prospective calculations are needed to determine the robustness of this method in providing refined information useful for neurosurgical treatment of tremor.
Resumo:
AIMS:During β-adrenergic receptor (β-AR) stimulation, phosphorylation of cardiomyocyte ryanodine receptors by protein kinases may contribute to an increased diastolic Ca(2+) spark frequency. Regardless of prompt activation of protein kinase A during β-AR stimulation, this appears to rely more on activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), by a not yet identified signalling pathway. The goal of the present study was to identify and characterize the mechanisms which lead to CaMKII activation and elevated Ca(2+) spark frequencies during β-AR stimulation in single cardiomyocytes in diastolic conditions. METHODS AND RESULTS:Confocal imaging revealed that β-AR stimulation increases endogenous NO production in cardiomyocytes, resulting in NO-dependent activation of CaMKII and a subsequent increase in diastolic Ca(2+) spark frequency. These changes of spark frequency could be mimicked by exposure to the NO donor GSNO and were sensitive to the CaMKII inhibitors KN-93 and AIP. In vitro, CaMKII became nitrosated and its activity remained increased independent of Ca(2+) in the presence of GSNO, as assessed with biochemical assays. CONCLUSIONS:β-AR stimulation of cardiomyocytes may activate CaMKII by a novel direct pathway involving NO, without requiring Ca(2+) transients. This crosstalk between two established signalling pathways may contribute to arrhythmogenic diastolic Ca(2+) release and Ca(2+) waves during adrenergic stress, particularly in combination with cardiac diseases. In addition, NO-dependent activation of CaMKII is likely to have repercussions in many cellular signalling systems and cell types.
Resumo:
In the mammalian retina, AII amacrine cells are essential in the rod pathway for dark-adapted vision. But they also have a “day job”, to provide inhibitory inputs to certain OFF ganglion cells in photopic conditions. This is known as crossover inhibition. Physiological evidence from several different labs implies that AII amacrine cells provide direct input to certain OFF ganglion cells. However, previous EM analysis of the rabbit retina suggests that the dominant output of the AII amacrine cell in sublamina a goes to OFF cone bipolar cells (Strettoi et al., 1992). Two OFF ganglion cell types in the rabbit retina, OFF α and G9, were identified by a combination of morphological criteria such as dendritic field size, dye coupling, mosaic properties and stratification depth. The AII amacrine cells (AIIs) were labeled with an antibody against calretinin and glycine receptors were marked with an antibody against the α1 subunit. This material was analyzed by triple-label confocal microscopy. We found the lobules of AIIs made close contacts at many points along the dendrites of individual OFF α and G9 ganglion cells. At these potential synaptic sites, we also found punctate labeling for the glycine receptor α1 subunit. The presence of a post-synaptic marker such as the α1 glycine receptor at contact points between AII lobules and OFF ganglion cells supports a direct inhibitory input from AIIs. This pathway provides for crossover inhibition in the rabbit retina whereby light onset provides an inhibitory signal to OFF α and G9 ganglion cells. Thus, these two OFF ganglion cell types receive a mixed excitatory and inhibitory drive in response to light stimulation.
Resumo:
A complex of interrelated factors including minority status, poverty, education, health status, and other factors determine the general welfare of children in America, particularly in heavily diverse states such as Texas. Although racial/ethnic status is clearly only a concomitant factor in that determination it is a factor for which future projections are available and for which the relationships with the other factors in the complex can be assessed. After examining the nature of the interrelationships between these factors we utilize direct standardization techniques to examine how the future diversification of the United States and Texas will affect the number of children in poverty, the educational status of the householders in households in which children in poverty live and the health status of children in 2040 assuming that the current relationships between minority status and these socioeconomic factors continue into the future. In the results of the analyses, data are compared with the total population of the United States and Texas in 2040 assumed in the first simulation scenario, to have the race/ethnicity characteristics of 2008 and in the second those projected for 2040 by the U.S. Census Bureau for the nation and by the Texas State Data Center for Texas in 2040. The results show that the diversification of the population could increase the number of children in poverty in the United States by nearly 1.8 million more than would occur with the lower levels of diversification evident in 2008. In addition, poverty would become increasingly concentrated among minority children with minority children accounting for 76.2 percent of all children in poverty by 2040 and with Hispanic children accounting for nearly half of the children in poverty by 2040. Results for educational attainment show an increasing concentration of minority children in households with householders with very low levels of education such that by 2040, 85.2 percent of the increase in the number of children in poverty would be in households with a householder with less than a high school level of education. Finally, the results related to several health status factors show that children in poverty will have a higher prevalence of nearly all health conditions. For example, the number of children with untreated dental conditions could increase to more than 4 million in the United States and to nearly 500,000 in Texas. The results clearly show that improving the welfare of children in America will require concerted efforts to change the poverty, educational, and health status characteristics associated with minority status and particularly Hispanic status. Failing to do so will lead to a future in which America’s children are increasingly impoverished, more poorly educated, and less healthy and which, as a result, is an America with a more tentative future.