799 resultados para Trans-fatty-acids
Resumo:
Despite data favouring a role of dietary fat in colonic carcinogenesis, no study has focused on tissue n3 and n6 fatty acid (FA) status in human colon adenoma-carcinoma sequence. Thus, FA profile was measured in plasma phospholipids of patients with colorectal cancer (n = 22), sporadic adenoma (n = 27), and normal colon (n = 12) (control group). Additionally, mucosal FAs were assessed in both diseased and normal mucosa of cancer (n = 15) and adenoma (n = 21) patients, and from normal mucosa of controls (n = 8). There were no differences in FA profile of both plasma phospholipids and normal mucosa, between adenoma and control patients. There were considerable differences, however, in FAs between diseased and paired normal mucosa of adenoma patients, with increases of linoleic (p = 0.02), dihomogammalinolenic (p = 0.014), and eicosapentaenoic (p = 0.012) acids, and decreases of alpha linolenic (p = 0.001) and arachidonic (p = 0.02) acids in diseased mucosa. A stepwise reduction of eicosapentaenoic acid concentrations in diseased mucosa from benign adenoma to the most advanced colon cancer was seen (p = 0.009). Cancer patients showed lower alpha linolenate (p = 0.002) and higher dihomogammalinolenate (p = 0.003) in diseased than in paired normal mucosa. In conclusion changes in tissue n3 and n6 FA status might participate in the early phases of the human colorectal carcinogenesis.
Resumo:
The addition of some fat co- and by-products to feeds is usual nowadays; however, the regulations of their use are not always clear and vary between countries. For instance, the use of recycled cooking oils is not allowed in the European Union, but they are used in other countries. However, oils recovered from industrial frying processes could show satisfactory quality for this purpose. Here we studied the effects of including oils recovered from the frying industry in rabbit and chicken feeds (at 30 and 60 g/kg, respectively) on the fatty acid (FA) and tocol (tocopherol + tocotrienol) compositon of meat, liver and plasma, and on their oxidative stability. Three dietary treatments (replicated eight times) were compared: fresh non-used oil (LOX); oil discarded from the frying industry, having a high content of secondary oxidation compounds (HOX); and an intermediate level (MOX) obtained by mixing 50 : 50 of LOX and HOX. The FA composition of oil diets and tissues was assessed by GC, their tocol content by HPLC, the thiobarbituric acid value was used to assess tissue oxidation status, and the ferrous oxidation-xylenol orange method was used to assess the susceptibility of tissues to oxidation. Our results indicate that FA composition of rabbit and chicken meat, liver and plasma was scarcely altered by the addition of recovered frying oils to feed. Differences were encountered in the FA composition between species, which might be attributed mainly to differences in the FA digestion, absorption and metabolism between species, and to some physiological dietary factors (i.e. coprophagy in rabbits that involves fermentation with FA structure modification). The α-tocopherol (αT) content of tissues was reduced in response to the lower αT content in the recovered frying oil. Differences in the content of other tocols were encountered between chickens and rabbits, which might be attributable to the different tocol composition of their feeds, as well as to species differences in the digestion and metabolism of tocols. Tissue oxidation and susceptibility to oxidation were in general low and were not greatly affected by the degree of oxidation of the oil added to the feeds. The relative content of polyunsaturated fatty acids/αT in these types of samples would explain the differences observed between species in the susceptibility of each tissue to oxidation. According to our results, oils recovered from the frying industry could be useful for feed uses.
Resumo:
The effects of infusion of a triglyceride emulsion (which induces peripheral insulin resistance) and amino acids (which stimulate gluconeogenesis) on glucose metabolism were investigated in healthy lean humans during exogenous infusion of glucose. One group of subjects (n = 5) was infused for 7.5 h with 11.1 mumol/kg/min glucose; during the last 4 h, amino acids were also infused at a rate of 3.33 mg/kg/min. A second group of subjects (n = 5) was infused with glucose+lipids (Lipovenös, 10% 10 ml/min) for 7.5 h and amino acids were added during the last 4 h. Infusion of lipids suppressed the increase in glucose oxidation observed during infusion of glucose alone (delta glucose oxidation: -2.1 +/- 1.1 vs. + 4.5 +/- 1.4 mumol/kg/min; P < 0.05) and during infusion of glucose+amino acids (delta glucose oxidation: + 1.6 +/- 1.4 vs. + 10.6 +/- 1.2 mumol/kg/min; P < 0.05). Gluconeogenesis (determined from 13C glucose synthesis during infusion of 13C bicarbonate) increased from 1.1 +/- 0.2 mumol/kg/min during infusion of glucose and 1.6 +/- 0.3 during infusion of glucose+lipids to 3.2 +/- 0.4 and 3.1 +/- 0.4, respectively, when amino acid infusion was superimposed (P < 0.05 in both instances). Plasma glucose concentrations were identical during infusion of glucose alone or glucose+amino acids, with or without lipids. Insulin concentrations were significantly increased by lipids both during infusion of glucose alone and of glucose+amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Fructose is mainly consumed with added sugars (sucrose and high fructose corn syrup), and represents up to 10% of total energy intake in the US and in several European countries. This hexose is essentially metabolized in splanchnic tissues, where it is converted into glucose, glycogen, lactate, and, to a minor extent, fatty acids. In animal models, high fructose diets cause the development of obesity, insulin resistance, diabetes mellitus, and dyslipidemia. Ectopic lipid deposition in the liver is an early occurrence upon fructose exposure, and is tightly linked to hepatic insulin resistance. In humans, there is strong evidence, based on several intervention trials, that fructose overfeeding increases fasting and postprandial plasma triglyceride concentrations, which are related to stimulation of hepatic de novo lipogenesis and VLDL-TG secretion, together with decreased VLDL-TG clearance. However, in contrast to animal models, fructose intakes as high as 200 g/day in humans only modestly decreases hepatic insulin sensitivity, and has no effect on no whole body (muscle) insulin sensitivity. A possible explanation may be that insulin resistance and dysglycemia develop mostly in presence of sustained fructose exposures associated with changes in body composition. Such effects are observed with high daily fructose intakes, and there is no solid evidence that fructose, when consumed in moderate amounts, has deleterious effects. There is only limited information regarding the effects of fructose on intrahepatic lipid concentrations. In animal models, high fructose diets clearly stimulate hepatic de novo lipogenesis and cause hepatic steatosis. In addition, some observations suggest that fructose may trigger hepatic inflammation and stimulate the development of hepatic fibrosis. This raises the possibility that fructose may promote the progression of non-alcoholic fatty liver disease to its more severe forms, i.e. non-alcoholic steatohepatitis and cirrhosis. In humans, a short-term fructose overfeeding stimulates de novo lipogenesis and significantly increases intrahepatic fat concentration, without however reaching the proportion encountered in non-alcoholic fatty liver diseases. Whether consumption of lower amounts of fructose over prolonged periods may contribute to the pathogenesis of NAFLD has not been convincingly documented in epidemiological studies and remains to be further assessed.
Resumo:
The role of retinoic acids (RA) on liver fatty acid-binding protein (L-FABP) expression was investigated in the well differentiated FAO rat hepatoma cell line. 9-cis-Retinoic acid (9-cis-RA) specifically enhanced L-FABP mRNA levels in a time- and dose-dependent manner. The higher induction was found 6 h after addition of 10(-6) M 9-cis-RA in the medium. RA also enhanced further both L-FABP mRNA levels and cytosolic L-FABP protein content induced by oleic acid. The retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR), which are known to be activated, respectively, by 9-cis-RA and long chain fatty acid (LCFA), co-operated to bind specifically the peroxisome proliferator-responsive element (PPRE) found upstream of the L-FABP gene. Our result suggest that the PPAR-RXR complex is the molecular target by which 9-cis-RA and LCFA regulate the L-FABP gene.
Resumo:
The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.
Resumo:
Chronic inflammation and fatty acid deficiency, in particular in docosahexaenoic acid (DHA, C22:6-n3), occurring in cystic fibrosis patients, are two convincing arguments urging the use of polyunsaturated fatty acids (PUFA) omega-3 in this population. PUFA omega-3 oral dietary intake position in the cystic fibrosis treatment is however not clear despite many years of clinical research. This review article sets out the reasons that conduct nutritionists to try this approach and reviews the results published until nowadays.
Resumo:
The effects of diet on Longissimus muscle fatty acid composition was determined using 24 crossbred heifers of Simmental vs. Nelore and Limousin vs. Nelore. The experimental diets were: 1) corn and yeast (CY); 2) corn, cottonseed meal + meat and bones meal (CMB); 3) cassava hull and yeast (CHY); 4) cassava hull, cottonseed meal + meat and bones meal (CHMB). Feeding CHMB diets resulted in lower lipid and higher cholesterol contents (P<0.05) for both crosses. Most of the identified fatty acids were monounsaturated, and the highest percentage was found to oleic acid (C18:1w9), with values ranging from 32.54 to 46.42%. Among the saturated fatty acids the palmitic acid (C16:0) showed the highest percentage, with its contents ranging between 19.40 and 32.44%. The highest polyunsaturated/saturated fatty acid ratio was of 0.30, and the lowest was of 0.08. Feeding CY diets resulted in lower cholesterol and higher polyunsaturated fatty acid contents of the Longissimus muscle.
Resumo:
Peroxisome proliferator-activated receptor alpha (PPARalpha)is a nuclear receptor for various fatty acids, eicosanoids, and hypolipidemic drugs. In the presence of ligand, this transcription factor increases expression of target genes that are primarily associated with lipid homeostasis. We have previously reported PPARalpha as a nuclear receptor of the inflammatory mediator leukotriene B(4) (LTB(4)) and demonstrated an anti-inflammatory function for PPARalpha in vivo (Devchand, P. R., Keller, H., Peters, J. M., Vazquez, M., Gonzalez, F. J., and Wahli, W. (1996) Nature 384, 39-43). LTB(4) also has a cell surface receptor (BLTR) that mediates proinflammatory events, such as chemotaxis and chemokinesis (Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., and Shimizu, T. (1997) Nature 387, 620-624). In this study, we report on chemical probes that differentially modulate activity of these two LTB(4) receptors. The compounds selected were originally characterized as synthetic BLTR effectors, both agonists and antagonists. Here, we evaluate the compounds as effectors of the three PPAR isotypes (alpha, beta, and gamma) by transient transfection assays and also determine whether the compounds are ligands for these nuclear receptors by coactivator-dependent receptor ligand interaction assay, a semifunctional in vitro assay. Because the compounds are PPARalpha selective, we further analyze their potency in a biological assay for the PPARalpha-mediated activity of lipid accumulation. These chemical probes will prove invaluable in dissecting processes that involve nuclear and cell surface LTB(4) receptors and also aid in drug discovery programs.
Resumo:
The degradation of fatty acids in plants occurs primarily in the peroxisomes through the beta-oxidation cycle. Enzymes that are involved in various aspects of beta-oxidation have been identified recently and shown to act biochemically on a diversity of fatty acids and derivatives. Analysis of several mutants has revealed essential roles for beta-oxidation in the breakdown of reserve triacylglycerols, seed development, seed germination and post-germinative growth before the establishment of photosynthesis. Beta-oxidation has also a considerable importance during the vegetative and reproductive growth phases, and plays a role in plant responses to stress, particularly in the synthesis of jasmonic acid.
Resumo:
Rapeseed (Brassica napus) oils differing in cultivar, sites of growth, and harvest year were characterized by fatty acid concentrations and carbon, hydrogen, and oxygen stable isotope analyses of bulk oils (delta(13)C(bulk), delta(2)H(bulk), delta(18)O(bulk) values) and individual fatty acids (delta(13)C(FA)). The delta(13)C(bulk), delta(2)H(bulk), and delta(18)O(bulk) values were determined by continuous flow combustion and high-temperature conversion elemental analyzer isotope ratio mass spectrometry (EA/IRMS, TC-EA/IRMS). The delta(13)C(FA) values were determined using gas chromatography-combustion isotope ratio mass spectrometry (GC/C/IRMS). For comparison, other C(3) vegetable oils rich in linolenic acid (flax and false flax oils) and rich in linoleic acid (poppy, sunflower, and safflower oils) were submitted to the same chemical and isotopic analyses. The bulk and molecular delta(13)C values were typical for C(3) plants. The delta(13)C value of palmitic acid (delta(13)C(16:0)) and n-3 alpha-linolenic acid (delta(13)C(18:3n-3)) differed (p < 0.001) between rape, flax, and poppy oils. Also within species, significant differences of delta(13)C(FA) were observed (p < 0.01). The hydrogen and oxygen isotope compositions of rape oil differed between cultivars (p < 0.05). Major differences in the individual delta(13)C(FA) values were found. A plant-specific carbon isotope fractionation occurs during the biosynthesis of the fatty acids and particularly during desaturation of C(18) acids in rape and flax. Bulk oil and specific fatty acid stable isotope analysis might be useful in tracing dietary lipids differing in their origin.
Resumo:
Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.
Resumo:
The addition of some fat co- and by-products to feeds is usual nowadays; however, the regulations of their use are not always clear and vary between countries. For instance, the use of recycled cooking oils is not allowed in the European Union, but they are used in other countries. However, oils recovered from industrial frying processes could show satisfactory quality for this purpose. Here we studied the effects of including oils recovered from the frying industry in rabbit and chicken feeds (at 30 and 60 g/kg, respectively) on the fatty acid (FA) and tocol (tocopherol + tocotrienol) compositon of meat, liver and plasma, and on their oxidative stability. Three dietary treatments (replicated eight times) were compared: fresh non-used oil (LOX); oil discarded from the frying industry, having a high content of secondary oxidation compounds (HOX); and an intermediate level (MOX) obtained by mixing 50 : 50 of LOX and HOX. The FA composition of oil diets and tissues was assessed by GC, their tocol content by HPLC, the thiobarbituric acid value was used to assess tissue oxidation status, and the ferrous oxidation-xylenol orange method was used to assess the susceptibility of tissues to oxidation. Our results indicate that FA composition of rabbit and chicken meat, liver and plasma was scarcely altered by the addition of recovered frying oils to feed. Differences were encountered in the FA composition between species, which might be attributed mainly to differences in the FA digestion, absorption and metabolism between species, and to some physiological dietary factors (i.e. coprophagy in rabbits that involves fermentation with FA structure modification). The α-tocopherol (αT) content of tissues was reduced in response to the lower αT content in the recovered frying oil. Differences in the content of other tocols were encountered between chickens and rabbits, which might be attributable to the different tocol composition of their feeds, as well as to species differences in the digestion and metabolism of tocols. Tissue oxidation and susceptibility to oxidation were in general low and were not greatly affected by the degree of oxidation of the oil added to the feeds. The relative content of polyunsaturated fatty acids/αT in these types of samples would explain the differences observed between species in the susceptibility of each tissue to oxidation. According to our results, oils recovered from the frying industry could be useful for feed uses.
Resumo:
The addition of some fat co- and by-products to feeds is usual nowadays; however, the regulations of their use are not always clear and vary between countries. For instance, the use of recycled cooking oils is not allowed in the European Union, but they are used in other countries. However, oils recovered from industrial frying processes could show satisfactory quality for this purpose. Here we studied the effects of including oils recovered from the frying industry in rabbit and chicken feeds (at 30 and 60 g/kg, respectively) on the fatty acid (FA) and tocol (tocopherol1tocotrienol) compositon of meat, liver and plasma, and on their oxidative stability. Three dietary treatments (replicated eight times) were compared: fresh non-used oil (LOX); oil discarded from the frying industry, having a high content of secondary oxidation compounds (HOX); and an intermediate level (MOX) obtained by mixing 50 : 50 of LOX and HOX. The FA composition of oil diets and tissues was assessed by GC, their tocol content by HPLC, the thiobarbituric acid value was used to assess tissue oxidation status, and the ferrous oxidation-xylenol orange method was used to assess the susceptibility of tissues to oxidation. Our results indicate that FA composition of rabbit and chicken meat, liver and plasma was scarcely altered by the addition of recovered frying oils to feed. Differences were encountered in the FA composition between species, which might be attributed mainly to differences in the FA digestion, absorption and metabolism between species, and to some physiological dietary factors (i.e. coprophagy in rabbits that involves fermentation with FA structure modification). The a-tocopherol (aT) content of tissues was reduced in response to the lower aT content in the recovered frying oil. Differences in the content of other tocols were encountered between chickens and rabbits, which might be attributable to the different tocol composition of their feeds, as well as to species differences in the digestion and metabolism of tocols. Tissue oxidation and susceptibility to oxidation were in general low and were not greatly affected by the degree of oxidation of the oil added to the feeds. The relative content of polyunsaturated fatty acids/aT in these types of samples would explain the differences observed between species in the susceptibility of each tissue to oxidation. According to our results, oils recovered from the frying industry could be useful for feed uses.
Resumo:
Arabidopsis expressing the castor bean (Ricinus communis) oleate 12-hydroxylase or the Crepis palaestina linoleate 12-epoxygenase in developing seeds typically accumulate low levels of ricinoleic acid and vernolic acid, respectively. We have examined the presence of a futile cycle of fatty acid degradation in developing seeds using the synthesis of polyhydroxyalkanoate (PHA) from the intermediates of the peroxisomal beta-oxidation cycle. Both the quantity and monomer composition of the PHA synthesized in transgenic plants expressing the 12-epoxygenase and 12-hydroxylase in developing seeds revealed the presence of a futile cycle of degradation of the corresponding unusual fatty acids, indicating a limitation in their stable integration into lipids. The expression profile of nearly 200 genes involved in fatty acid biosynthesis and degradation has been analyzed through microarray. No significant changes in gene expression have been detected as a consequence of the activity of the 12-epoxygenase or the 12-hydroxylase in developing siliques. Similar results have also been obtained for transgenic plants expressing the Cuphea lanceolata caproyl-acyl carrier protein thioesterase and accumulating high amounts of caproic acid. Only in developing siliques of the tag1 mutant, deficient in the accumulation of triacylglycerols and shown to have a substantial futile cycling of fatty acids toward beta-oxidation, have some changes in gene expression been detected, notably the induction of the isocitrate lyase gene. These results indicate that analysis of peroxisomal PHA is a better indicator of the flux of fatty acid through beta-oxidation than the expression profile of genes involved in lipid metabolism.