946 resultados para Traditional costing systems
Resumo:
A simple theoretical framework is presented for bioassay studies using three component in vitro systems. An equilibrium model is used to derive equations useful for predicting changes in biological response after addition of hormone-binding-protein or as a consequence of increased hormone affinity. Sets of possible solutions for receptor occupancy and binding protein occupancy are found for typical values of receptor and binding protein affinity constants. Unique equilibrium solutions are dictated by the initial condition of total hormone concentration. According to the occupancy theory of drug action, increasing the affinity of a hormone for its receptor will result in a proportional increase in biological potency. However, the three component model predicts that the magnitude of increase in biological potency will be a small fraction of the proportional increase in affinity. With typical initial conditions a two-fold increase in hormone affinity for its receptor is predicted to result in only a 33% increase in biological response. Under the same conditions an Ii-fold increase in hormone affinity for receptor would be needed to produce a two-fold increase in biological potency. Some currently used bioassay systems may be unrecognized three component systems and gross errors in biopotency estimates will result if the effect of binding protein is not calculated. An algorithm derived from the three component model is used to predict changes in biological response after addition of binding protein to in vitro systems. The algorithm is tested by application to a published data set from an experimental study in an in vitro system (Lim et al., 1990, Endocrinology 127, 1287-1291). Predicted changes show good agreement (within 8%) with experimental observations. (C) 1998 Academic Press Limited.
Resumo:
We review the description of noise in electronic circuits in terms of electron transport. The Poisson process is used as a unifying principle. In recent years, much attention has been given to current noise in light-emitting diodes and laser diodes. In these devices, random events associated with electron transport are correlated with photon emission times, thus modifying both the current statistics and the statistics of the emitted light. We give a review of experiments in this area with special emphasis on the ability of such devices to produce subshot-noise currents and light beams. Finally we consider the noise properties of a class of mesoscopic devices based on the quantum tunnelling of an electron into and out of a bound state. We present a simple quantum model of this process which confirms that the current noise in such a device should be subshot-noise.
Resumo:
Parkinson's disease (PD) is a neurodegenerative movement disorder primarily due to basal ganglia dysfunction. While much research has been conducted on Parkinsonian deficits in the traditional arena of musculoskeletal limb movement, research in other functional motor tasks is lacking. The present study examined articulation in PD with increasingly complex sequences of articulatory movement. Of interest was whether dysfunction would affect articulation in the same manner as in limb-movement impairment. In particular, since very Similar (homogeneous) articulatory sequences (the tongue twister effect) are more difficult for healthy individuals to achieve than dissimilar (heterogeneous) gestures, while the reverse may apply for skeletal movements in PD, we asked which factor would dominate when PD patients articulated various grades of artificial tongue twisters: the influence of disease or a possible difference between the two motor systems. Execution was especially impaired when articulation involved a sequence of motor program heterogeneous in terms of place of articulation. The results are suggestive of a hypokinesic tendency in complex sequential articulatory movement as in limb movement. It appears that PD patients do show abnormalities in articulatory movement which are similar to those of the musculoskeletal system. The present study suggests that an underlying disease effect modulates movement impairment across different functional motor systems. (C) 1998 Academic Press.
Resumo:
A theoretical analysis is carried out to investigate the pore-fluid pressure gradient and effective vertical-stress gradient distribution in fluid saturated porous rock masses in layered hydrodynamic systems. Three important concepts, namely the critical porosity of a porous medium, the intrinsic Fore-fluid pressure and the intrinsic effective vertical stress of the solid matrix, are presented and discussed. Using some basic scientific principles, we derive analytical solutions and explore the conditions under which either the intrinsic pore-fluid pressure gradient or the intrinsic effective vertical-stress gradient can be maintained at the value of the lithostatic pressure gradient. Even though the intrinsic pore-fluid pressure gradient can be maintained at the value of the lithostatic pressure gradient in a single layer, it is impossible to maintain it at this value in all layers in a layered hydrodynamic system, unless all layers have the same permeability and porosity simultaneously. However, the intrinsic effective vertical-stress gradient of the solid matrix can be maintained at a value close to the lithostatic pressure gradient in all layers in any layered hydrodynamic system within the scope of this study.
Resumo:
Power system small signal stability analysis aims to explore different small signal stability conditions and controls, namely: (1) exploring the power system security domains and boundaries in the space of power system parameters of interest, including load flow feasibility, saddle node and Hopf bifurcation ones; (2) finding the maximum and minimum damping conditions; and (3) determining control actions to provide and increase small signal stability. These problems are presented in this paper as different modifications of a general optimization to a minimum/maximum, depending on the initial guesses of variables and numerical methods used. In the considered problems, all the extreme points are of interest. Additionally, there are difficulties with finding the derivatives of the objective functions with respect to parameters. Numerical computations of derivatives in traditional optimization procedures are time consuming. In this paper, we propose a new black-box genetic optimization technique for comprehensive small signal stability analysis, which can effectively cope with highly nonlinear objective functions with multiple minima and maxima, and derivatives that can not be expressed analytically. The optimization result can then be used to provide such important information such as system optimal control decision making, assessment of the maximum network's transmission capacity, etc. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Land degradation in the Philippine uplands is severe and widespread. Most upland areas are steep, and intense rainfall on soils disturbed by intensive agriculture can produce high rates of soil loss. This has serious implications for the economic welfare of a growing upland population with few feasible livelihood alternatives. Hedgerow intercropping can greatly reduce soil loss from annual cropping systems and has been considered an appropriate technology for soil conservation research and extension in the Philippine uplands. However; adoption of hedgerow intercropping has been sporadic and transient, rarely continuing once external support has been withdrawn. The objective of this paper is to investigate the economic incentives for farmers in the Philippine uplands to adopt hedgerow intercropping relative to traditional open-field maize farming. Cost-benefit analysis is used to compare the economic viability of hedgerow intercropping, as it has been promoted to upland farmers, with the viability of traditional methods of open-field farming. The APSIM and SCUAF models were used to predict the effect of soil erosion on maize yields from open-field farming and hedgerow intercropping. The results indicate that there have been strong economic incentives for farmers with limited planning horizons to reject hedgerow intercropping because the benefits of sustained yields are not realized rapidly enough to compensate for high establishment costs. Alternative forms of hedgerow intercropping such as natural vegetation and grass strips reduce establishment and maintenance costs and are therefore more economically attractive to farmers than hedgerow intercropping with shrub legumes. The long-term economic viability of hedgerow intercropping depends on the economic setting and the potential for hedgerow intercropping to sustain maize production relative to traditional open-field farming. (C) 1998 Academic Press.
Resumo:
A version of the Agricultural Production Systems Simulator (APSIM) capable of simulating the key agronomic aspects of intercropping maize between legume shrub hedgerows was described and parameterised in the first paper of this series (Nelson et al., this issue). In this paper, APSIM is used to simulate maize yields and soil erosion from traditional open-field farming and hedgerow intercropping in the Philippine uplands. Two variants of open-field farming were simulated using APSIM, continuous and fallow, for comparison with intercropping maize between leguminous shrub hedgerows. Continuous open-field maize farming was predicted to be unsustainable in the long term, while fallow open-field farming was predicted to slow productivity decline by spreading the effect of erosion over a larger cropping area. Hedgerow intercropping was predicted to reduce erosion by maintaining soil surface cover during periods of intense rainfall, contributing to sustainable production of maize in the long term. In the third paper in this series, Nelson et al. (this issue) use cost-benefit analysis to compare the economic viability of hedgerow intercropping relative to traditional open-field farming of maize in relatively inaccessible upland areas. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Recently the problem of the existence of a 5-cycle system of K-v with a hole of size u was completely solved. In this paper we prove necessary and sufficient conditions on v and u for the existence of a 5-cycle system of K-v - F, with a hole of size u.
Resumo:
We describe a method which, in certain circumstances, may be used to prove that the well-known necessary conditions for partitioning the edge set of the complete graph on an odd number of vertices (or the complete graph on an even number of vertices with a 1-factor removed) into cycles of lengths m(1),m(2),...,m(t) are sufficient in the case \{m(1), m(2), ..., m(t)}\=2. The method is used to settle the case where the cycle lengths are 4 and 5. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A quantum Markovian master equation is derived to describe the current noise in resonant tunneling devices. This equation includes both incoherent and coherent quantum tunneling processes. We show how to obtain the population master equation by adiabatic elimination of quantum coherences in the presence of elastic scattering. We calculate the noise spectrum for a double well device and predict subshot noise statistics for strong tunneling between the wells. The method is an alternative to Green's function methods and population master equations for very small coherently coupled quantum dots.
Resumo:
We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.
Resumo:
Training-needs analysis is critical for defining and procuring effective training systems. However, traditional approaches to training-needs analysis are not suitable for capturing the demands of highly automated and computerized work domains. In this article, we propose that work domain analysis can identify the functional structure of a work domain that must be captured in a training system, so that workers can be trained to deal with unpredictable contingencies that cannot be handled by computer systems. To illustrate this argument, we outline a work domain analysis of a fighter aircraft that defines its functional structure in terms of its training objectives, measures of performance, basic training functions, physical functionality, and physical context. The functional structure or training needs identified by work domain analysis can then be used as a basis for developing functional specifications for training systems, specifically its design objectives, data collection capabilities, scenario generation capabilities, physical functionality, and physical attributes. Finally, work domain analysis also provides a useful framework for evaluating whether a tendered solution fulfills the training needs of a work domain.
Resumo:
This paper summarizes the processes involved in designing a mathematical model of a growing pasture plant, Stylosanthes scabra Vog. cv. Fitzroy. The model is based on the mathematical formalism of Lindenmayer systems and yields realistic computer-generated images of progressive plant geometry through time. The processes involved in attaining growth data, retrieving useful growth rules, and constructing a virtual plant model are outlined. Progressive output morphological data proved useful for predicting total leaf area and allowed for easier quantification of plant canopy size in terms of biomass and total leaf area.
Resumo:
SETTING: Hlabisa, South Africa. OBJECTIVE: To determine precedent and potential for traditional healers to act as tuberculosis (TB) treatment supervisors. METHODS: Literature review to describe precedent for the involvement of traditional healers in TB treatment supervision. Interviews with 100 TB patients to determine use of healers and their acceptability as supervisors. Interviews with 24 healers in the project sub-district to determine willingness to act as supervisors. RESULTS: Despite extensive literature on the interaction between traditional healers and conventional health services, including descriptions of traditional understandings of TB, no published work was identified that reported supervision of TB patients by traditional healers. Of 100 patients interviewed, only 10% had used a healer as the first health provider for their illness, but 40% had attended a healer at some time prior to diagnosis. Although only 4% believe healers can cure TB, 84% would consider choosing a healer as a treatment supervisor. Of the 24 healers, 15 (63%) distinguished between two types of diagnosis made among patients with. symptoms suggestive of TB: TB and idliso. Idliso is poisoning or bewitching, and is said to be best cured by healers, while TB is infectious and cannot be cured by healers. Most healers (88%) reported having referred patients with possible TB to hospital in the past; all were keen to negotiate collaboration with health services, and 92% were willing to act as treatment supervisors. CONCLUSIONS: While there is little reported precedent for traditional healers to interact formally with tuberculosis treatment services, the potential for collaboration seems to be high, at least in our setting.