969 resultados para Tracheal airway
Resumo:
Objective: To evaluate oral feeding capacity, the swallowing process, and risk for aspiration, both clinically and during fiberoptic endoscopic evaluation of swallowing, in infants with isolated Robin sequence treated exclusively with nasopharyngeal intubation and feeding facilitating techniques. Design: Longitudinal and prospective study. Setting: Hospital de Reabilitacao de Anomalies Craniofaciais, University of Sao Paulo, Bauru, Brazil. Patients: Eleven infants with isolated Robin sequence, under 2 months of age, treated with nasopharyngeal intubation. Interventions: Feeding facilitating techniques were applied in all infants throughout the study period. The infants were evaluated clinically and through fiberoptic endoscopic evaluation of swallowing at first, second, and, if necessary, third week of hospitalization (T1, T2, T3). The mean volume of ingested milk was registered during clinical evaluation, and events were registered during feeding. Results: The respiratory status of all infants was improved after nasopharyngeal intubation; 72% of them presented risk for aspiration during fiberoptic endoscopic evaluation of swallowing at T1. This risk was less frequent when thickened milk was given to the infants and at subsequent evaluations (T2 and T3). Conclusions: Nasopharyngeal intubation aids in stabilizing the airway in isolated Robin sequence, but it does not relate directly to feeding. The risk for aspiration was present in most of the infants, mainly during the first week of hospitalization, and improved within a few weeks, after the use of feeding facilitating techniques.
Resumo:
This study assessed the influence of anesthetics on early complications after pharyngeal flap surgery. A 23-year retrospective chart review was carried out of all patients at the authors` institution who underwent superiorly based pharyngeal flap surgery. Variables analyzed were gender, age at the time of surgery, cleft type, anesthesia procedure used and complications in the early postoperative period. 2299 patients (50% male; 50% female) who underwent pharyngeal flap surgery between 1980 and 2003 were reviewed. The highest number of surgeries was performed in patients aged 11-20 years. There were 1042 patients with at least one type of complication. Of these, 39 required reoperation to control complications such as bleeding and airway obstruction. There were no records of death. Vomiting and pain were the most frequent postoperative complications (16% and 14% of patients, respectively). Lower complication rates were observed when anesthesia protocols included sevoflurane, propofol and opioids.
Resumo:
Objectives: To investigate the long-term effects of pharyngeal flap surgery (PFS) on nasal and nasopharyngeal dimensions of patients with velopharyngeal insufficiency (VPI) and to correlate the findings with the onset of respiratory complaints after surgery. Design/Participants: Prospective study in 58 nonsyndromic patients with repaired cleft palate and VPI, evaluated 2 days before and 5 months (POST1) and 1 year (POST2) after PFS, on average. Patients were divided into two groups: one consisting of patients with postoperative respiratory complaints (RC group) and the other without complaints (NRC group). Interventions: Superiorly based PFS. Main Outcome Measures: Respiratory complaints (self reports of mouth breathing, snoring, and other sleep obstructive events) assessed at POST1 and POST2, and minimum nasal (NCSA) and nasopharyngeal (NPA) cross-sectional areas assessed by rhinomanometry at POST2. Results: Respiratory complaints were reported by 55% and 36% of the patients evaluated at POST1 and POST2, respectively. Posterior rhinomanometry showed a significant postoperative reduction of mean NCSA in the RC and NRC groups (p < .05), to subnormal levels in some of them. The decrease was more pronounced in the RC group. No significant changes in NCSA were observed by anterior rhinomanometry. Similar results were obtained when NPA was assessed by modified anterior rhinomanometry. Conclusion: In the long-term, PFS yielded a significant reduction in upper airways dimensions beyond what should be expected and associated with persistent respiratory complaints in some cases.
Resumo:
Objectives: Children with cleft palate (CP) have a high prevalence of sinusitis. Considering that nasal mucus properties play a pivotal role in the upper airway defense mechanism, the aim of the study was to evaluate nasal mucus transportability and physical properties from children with CP. Setting: Hospital for Rehabilitation of Craniofacial Anomalies, School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil and Laboratory of Experimental Air Pollution, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil. Methods: Nasal mucus samples were collected by nasal aspiration from children with CP and without CP (non-CP). Sneeze clearance (SC) was evaluated by the simulated sneeze machine. In vitro mucus transportability (MCT) by cilia was evaluated by the frog palate preparation. Mucus physical surface properties were assessed by measuring the contact angle (CA). Mucus rheology was determined by means of a magnetic rheometer, and the results were expressed as log G* (vectorial sum of viscosity and elasticity) and tan delta (relationship between viscosity and elasticity) measured at 1 and 100 rad/s. Results: Mucus samples from children with CP had a higher SC than non-CP children (67 +/- 30 and 41 +/- 24 mm, respectively, p < 0.05). Mucus samples from children with CP had a lower CA (24 +/- 16 degrees and 35 +/- 11 degrees, p < 0.05) and a higher tan delta 100 (0.79 +/- 0.24 and 0.51 +/- 0.12, p < 0.05) than non-CP children. There were no significant differences in mucus MCT, log G* 1, tan delta 1 and log G* 100 obtained for CP and non-CP children. Conclusions: Nasal mucus physical properties from children with CP are associated with higher sneeze transportability. The high prevalence of sinusitis in children with CP cannot be explained by changes in mucus physical properties and transportability. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The objective of the current study was to characterize the internal nasal dimensions of children with repaired cleft lip and palate and transverse maxillary deficiency, using acoustic rhinometry and analyze the changes caused by rapid maxillary expansion (RME). A convenience sampling of 19 cleft lip and palate individuals, aged 14 to 18 years, of both sexes, previously submitted to primary surgeries and referred for RME were analyzed prospectively at the Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, Bauru, Sao Paulo, Brazil. All patients underwent acoustic rhinometry before installation of the expansor and at 30 and 180 days after the active expansion phase. Nasal cross-sectional areas and volumes corresponding to the nasal valve (CSA(1) and V(1)) and the turbinates (CSA(2), CSA(3), and V(2)) regions were determined before and after nasal decongestion. Rapid maxillary expansion led to a statistically significant increase (P < 0.05) in mean CSA(1), CSA(2), V(1), and V(2) (without nasal decongestion) and in CSA(1) and V(1) (with decongestion) in the group as a whole. Individual data analysis showed that 58% of the patients responded positively to RME, with an average increase in CSA(1) of 26% (with decongestion), whereas 37% of the patients had no significant change. Only 1 patient (5%) showed a decrease. The findings contribute toward the characterization of nasal deformities determined by the cleft and demonstrate the positive effect RME had on nasal morphophysiology in a significant number of the patients who underwent this procedure.
Resumo:
Cystic fibrosis (CF) is a complex disease affecting epithelial ion transport. There are not many diseases like CF that have triggered such intense research activities. The complexity of the disease is due to mutations in the CFTR protein, now known to be a Cl- channel and a regulator of other transport proteins. The various interactions and the large number of disease-causing CFTR mutations is the reason for a variable genotype-phenotype correlation and sometimes unpredictable clinical manifestation. Nevertheless, the research of the past 10 years has resulted in a tremendous increase in knowledge, not only in regard to CFTR but also in regard to molecular interactions and completely new means of ion channel and gene therapy.
Resumo:
Activation of the CFTR Cl- channel inhibits epithelial Na+ channels (ENaC), according to studies on epithelial cells and overexpressing recombinant cells. Here we demonstrate that ENaC is inhibited during stimulation of the cystic fibrosis trans-membrance conductance regulator (CFTR) in Xenopus oocytes, independent of the experimental set-up and the magnitude of the whole-cell current. Inhibition of ENaC is augmented at higher CFTR Cl- currents. Similar to CFTR, ClC-0 Cl- currents also inhibit ENaC, as well as high extracellular Na+ and Cl- in partially permeabilized oocytes. Thus, inhibition of ENaC is not specific to CFTR and seems to be mediated by Cl-.
Resumo:
Several cystic fibrosis (CF) mouse models demonstrate an increased susceptibility to Pseudomonas aeruginosa lung infection, characterized by excessive inflammation and high rates of mortality. Here we developed a model of chronic P. aeruginosa lung disease in mice homozygous for the murine CF transmembrane conductance regulator G551D mutation that provides an excellent model for CF lung disease. After 3 days of infection with mucoid P. aeruginosa entrapped in agar beads, the G551D animals lost substantially more body weight than non-CF control animals and were less able to control the infection, harboring over 40-fold more bacteria in the lung. The airways of infected G551D animals contained altered concentrations of the inflammatory mediators tumor necrosis factor-alpha, KC/N51, and macrophage inflammatory protein-2 during the first 2 days of infection, suggesting that an ineffective inflammatory response is partly responsible for the clearance defect.
Resumo:
Each abdominal hemisegment of the Drosophila embryo has two sensory neurons intimately associated with a tracheal branch. During embryogenesis, the axons of these sensory neurons, termed the v'td2 neurons, enter the CNS and grow toward the brain with a distinctive pathway change in the third thoracic neuromere. We show that the axons use guidance cues that are under control of the bithorax gene complex (BX-C). Pathway defects in mutants suggest that a drop in Ultrabithorax expression permits the pathway change in the T3 neuromere, while combined Ultrabithorax and abdominal-A expression represses it in the abdominal neuromeres. We propose that the axons do not respond to a particular segmental identity in forming the pathway change; rather they respond to pathfinding cues that come about as a result of a drop in BX-C expression along the antero-posterior axis of the CNS.
Resumo:
The objective of this study was to determine the mortality rate and the functional outcomes of stroke patients admitted to the intensive care unit (ICU) and to identify predictors of poor outcome in this population. The records of all patients admitted to the ICU with the diagnosis of stroke between January 1994 and December 1999 were reviewed. Patients with subarachnoid haemorrhage were excluded. Data were collected on clinical and biological variables, risk factors for stroke and the presence of comorbidities. Mortality (ICU, in-hospital and three-month) and functional outcome were used as end-points. In the six-year-period, 61 patients were admitted to the ICU with either haemorrhagic or ischaemic stroke. Medical records were available for only 58 patients. There were 23 ischaemic and 35 haemorrhagic strokes. The ICU, in-hospital and three-month mortality rates were 36%, 47% and 52% respectively. There were no significant differences in the prevalence of premorbid risk factors between survivors and non-survivors. The mean Barthel score was significantly different between the independent and dependent survivors (94 +/- 6 vs 45 +/- 26, P < 0.001). A substantial number of patients with good functional outcomes had lower Rankin scores (92% vs 11%, P < 0.001). Only 46% of those who were alive at three months were functionally independent. Intensive care admission was associated with a high mortality rate and a high likelihood of dependent lifestyle after hospital discharge. Haemorrhagic stroke, fixed dilated pupil(s) and GCS < 10 during assessment were associated with increased mortality and poor functional outcome.
Resumo:
A comprehensive study using virological and serological approaches was carried out to determine the status of live healthy mallard ducks (Anas platyrhynchos) in New Zealand for infections with avian paramyxoviruses (APMV) and influenza viruses (AIV). Thirty-three viruses isolated from 321 tracheal and cloacal swabs were characterized as: 6 AIV (two H5N2 and four H4N6), 10 APMV-1 and 17 APMV-4. Of 335 sera samples tested for AIV antibodies, 109 (32.5%) sera were positive by nucleoprotein-blocking ELISA (NP-B-ELISA). Serum samples (315) were examined for antibody to APMV-1, -2, -3, -4, -6, -7, -8, -9 by the haemagglutination inhibition test. The largest number of reactions, with titres up to greater than or equal to 1/64, was to APMV-1 (93.1%), followed by APMV-6 (85.1%), APMV-8 (56%), APMV-4 (51.7%), APMV-7 (47%), APMV-9 (15.9%), APMV-2 (13.3%) and APMV-3 (6.0%). All of the H5N2 isolates of AIV and the APMV-1 isolates from this and earlier New Zealand studies had low pathogenicity indices assessed by the Intravenous Pathogenicity Index (IVPI) with the result 0.00 and Intracerebral Pathogenicity Index (ICPI) with results 0.00-0.16. Partial genomic and antigenic analyses were also consistent with the isolates being non-pathogenic. Phylogenetic analysis of the 10 APMV-1 isolates showed 9 to be most similar to the reference APMV-1 strain D26/76 originally isolated in Japan and also to the Que/66 strain, which was isolated in Australia. The other isolate was very similar to a virus (MC 110/77) obtained from a shelduck in France.
Resumo:
Purinergic stimulation of airway epithelial cells induces Cl- secretion and modulates Na+ absorption by an unknown mechanism. To gain insight into this mechanism, we used a perfused micro-Ussing chamber to assess transepithelial voltage (V-te) and amiloride-sensitive short-circuit current (Isc-Amil) in mouse trachea. Exposure to apical ATP or UTP (each 100 mumol/l) caused a large initial increase in lumen negative V-te and I-sc corresponding to a transient Cl- secretion, while basolateral application of ATP/UTP induced only a small secretory response. Luminal, but not basolateral, application of nucleotides was followed by a sustained and reversible inhibition of Isc-Amil that was independent of extracellular Ca2+ or activation of protein kinase C and was not induced by carbachol (100 mumol/l) or the Ca2+ ionophore ionomycin (1 mumol/l). Removal of extracellular Cl- or exposure to 200 muM DIDS reduced UTP-mediated inhibition of Isc-Amil Substantially. The phospholipase inhibitor U73122 (10 mumol/l) and pertussis toxin (PTX 200 ng/ml) both attenuated UTP-induced Cl- secretion and inhibition of Isc-Amil. Taken together, these data imply a contribution of Cl- conductance and PTX-sensitive G proteins to nucleotide-dependent inhibition of the amiloride-sensitive Na+ current in the mouse trachea.
Resumo:
Chest clapping, vibration, and shaking were studied in 10 physiotherapists who applied these techniques on an anesthetized animal model. Hemodynamic variables (such as heart rate, blood pressure, pulmonary artery pressure, and right atrial pressure) were measured during the application of these techniques to verify claims of adverse events. In addition, expired tidal volume and peak expiratory flow rate were measured to ascertain effects of these techniques. Physiotherapists in this study applied chest clapping at a rate of 6.2 +/- 0.9 Hz, vibration at 10.5 +/- 2.3 Hz, and shaking at 6.2 +/- 2.3 Hz. With the use of these rates, esophageal pressure swings of 8.8 +/- 5.0, 0.7 +/- 0.3, and 1.4 +/- 0.7 mmHg resulted from clapping, vibration, and shaking respectively. Variability in rates and forces generated by these techniques was 80% of variance in shaking force (P = 0.003). Application of these techniques by physiotherapists was found to have no significant effects on hemodynamic and most ventilatory variables in this study. From this study, we conclude that chest clapping, vibration, and shaking 1) can be consistently performed by physiotherapists; 2) are significantly related to physiotherapists' characteristics, particularly clinical experience; and 3) caused no significant hemodynamic effects.
Resumo:
Recently, regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. The development of accurate and reliable segmentation techniques may be essential to improve research outcomes. This work presents an image processing method to measure the perimeter and area of lung branches on fetal rat explants. The algorithm starts by reducing the noise corrupting the image with a pre-processing stage. The outcome is input to a watershed operation that automatically segments the image into primitive regions. Then, an image pixel is selected within the lung explant epithelial, allowing a region growing between neighbouring watershed regions. This growing process is controlled by a statistical distribution of each region. When compared with manual segmentation, the results show the same tendency for lung development. High similarities were harder to obtain in the last two days of culture, due to the increased number of peripheral airway buds and complexity of lung architecture. However, using semiautomatic measurements, the standard deviation was lower and the results between independent researchers were more coherent