1000 resultados para Torres, Carlos Arturo, 1867-1911.
Resumo:
Les Tuniciers
Resumo:
Rhixopodes d'eau Douce
Resumo:
Melobesiees
Resumo:
Cetaces de l'Antarctique
Resumo:
Acariens, Foraminiferes
Resumo:
Gastropodes Prosobranches, Scaphopode et Pelecypod
Resumo:
Botanique (Diatomees d'eau douce et Diatomees d'ea
Resumo:
Bd.2
Resumo:
v.2 (1912)
Resumo:
Abstract Background: Morbid obesity is directly related to deterioration in cardiorespiratory capacity, including changes in cardiovascular autonomic modulation. Objective: This study aimed to assess the cardiovascular autonomic function in morbidly obese individuals. Methods: Cross-sectional study, including two groups of participants: Group I, composed by 50 morbidly obese subjects, and Group II, composed by 30 nonobese subjects. The autonomic function was assessed by heart rate variability in the time domain (standard deviation of all normal RR intervals [SDNN]; standard deviation of the normal R-R intervals [SDNN]; square root of the mean squared differences of successive R-R intervals [RMSSD]; and the percentage of interval differences of successive R-R intervals greater than 50 milliseconds [pNN50] than the adjacent interval), and in the frequency domain (high frequency [HF]; low frequency [LF]: integration of power spectral density function in high frequency and low frequency ranges respectively). Between-group comparisons were performed by the Student’s t-test, with a level of significance of 5%. Results: Obese subjects had lower values of SDNN (40.0 ± 18.0 ms vs. 70.0 ± 27.8 ms; p = 0.0004), RMSSD (23.7 ± 13.0 ms vs. 40.3 ± 22.4 ms; p = 0.0030), pNN50 (14.8 ± 10.4 % vs. 25.9 ± 7.2%; p = 0.0061) and HF (30.0 ± 17.5 Hz vs. 51.7 ± 25.5 Hz; p = 0.0023) than controls. Mean LF/HF ratio was higher in Group I (5.0 ± 2.8 vs. 1.0 ± 0.9; p = 0.0189), indicating changes in the sympathovagal balance. No statistical difference in LF was observed between Group I and Group II (50.1 ± 30.2 Hz vs. 40.9 ± 23.9 Hz; p = 0.9013). Conclusion: morbidly obese individuals have increased sympathetic activity and reduced parasympathetic activity, featuring cardiovascular autonomic dysfunction.
Resumo:
1) The first part deals with the different processes which may complicate Mendelian segregation and which may be classified into three groups, according to BRIEGER (1937b) : a) Instability of genes, b) Abnormal segregation due to distur- bances during the meiotic divisions, c) obscured segregation, after a perfectly normal meiosis, caused by elimination or during the gonophase (gametophyte in higher plants), or during zygophase (sporophyte). Without entering into detail, it is emphasized that all the above mentioned complications in the segregation of some genes may be caused by the action of other genes. Thus in maize, the instability of the Al factor is observed only when the gene dt is presente in the homozygous conditions (RHOADES 1938). In another case, still under observation in Piracicaba, an instability is observed in Mirabilis with regard to two pairs of alleles both controlling flower color. Several cases are known, especially in corn, where recessive genes, when homozigous, affect the course of meiosis, causing asynapsis (asyndesis) (BEADLE AND MC CLINTOCK 1928, BEADLE 1930), sticky chromosomes (BEADLE 1932), supermunmerary divisions (BEADLE 1931). The most extreme case of an obscured segregatiou is represented by the action of the S factors in self stetrile plants. An additional proof of EAST AND MANGELSDORF (1925) genetic formula of self sterility has been contributed by the studies on Jinked factors in Nicotina (BRIEGER AND MANGELSDORF (1926) and Antirrhinum (BRIEGER 1930, 1935), In cases of a incomplete competition and selection between pollen tubes, studies of linked indicator-genes are indispensable in the genetic analysis, since it is impossible to analyse the factors for gametophyte competition by direct aproach. 2) The flower structure of corn is explained, and stated that the particularites of floral biology make maize an excellent object for the study of gametophyte factors. Since only one pollen tube per ovule may accomplish fertilization, the competition is always extremely strong, as compared with other species possessing multi-ovulate ovaries. The lenght of the silk permitts the study of pollen tube competitions over a varying distance. Finally the genetic analysis of grains characters (endosperm and aleoron) simpliflen the experimental work considerably, by allowing the accumulation of large numbers for statistical treatment. 3) The four methods for analyzing the naturing of pollen tube competition are discussed, following BRIEGER (1930). Of these the first three are: a) polinization with a small number of pollen grains, b) polinization at different times and c) cut- ting the style after the faster tubes have passe dand before the slower tubes have reached the point where the stigma will be cut. d) The fourth method, alteration of the distatice over which competition takes place, has been applied largely in corn. The basic conceptions underlying this process, are illustrated in Fig. 3. While BRINK (1925) and MANGELSDORF (1929) applied pollen at different levels on the silks, the remaining authors (JONES, 1922, MANGELSDORF 1929, BRIEGER, at al. 1938) have used a different process. The pollen was applied as usual, after removing the main part of the silks, but the ears were divided transversally into halves or quarters before counting. The experiments showed generally an increase in the intensity of competition when there was increase of the distance over which they had to travel. Only MANGELSDORF found an interesting exception. When the distance became extreme, the initially slower tubes seemed to become finally the faster ones. 4) Methods of genetic and statistical analysis are discussed, following chiefly BRIEGER (1937a and 1937b). A formula is given to determine the intensity of ellimination in three point experiments. 5) The few facts are cited which give some indication about the physiological mechanism of gametophyte competition. They are four in number a) the growth rate depends-only on the action of gametophyte factors; b) there is an interaction between the conductive tissue of the stigma or style and the pollen tubes, mainly in self-sterile plants; c) after self-pollination necrosis starts in the tissue of the stigma, in some orchids after F. MÜLLER (1867); d) in pollon mixtures there is an inhibitory interaction between two types of pollen and the female tissue; Gossypium according to BALLS (1911), KEARNEY 1923, 1928, KEARNEY AND HARRISON (1924). A more complete discussion is found in BRIEGER 1930). 6) A list of the gametophyte factors so far localized in corn is given. CHROMOSOME IV Ga 1 : MANGELSDORF AND JONES (1925), EMERSON 1934). Ga 4 : BRIEGER (1945b). Sp 1 : MANGELSDORF (1931), SINGLETON AND MANGELSDORF (1940), BRIEGER (1945a). CHROMOSOME V Ga 2 : BRIEGER (1937a). CHROMOSOME VI BRIEGER, TIDBURY AND TSENG (1938) found indications of a gametophyte factor altering the segregation of yellow endosperm y1. CHROMOSOME IX Ga 3 : BRIEGER, TIDBURY AND TSENG (1938). While the competition in these six cases is essentially determined by one pair of factors, the degree of elimination may be variable, as shown for Ga2 (BRIEGER, 1937), for Ga4 (BRIEGER 1945a) and for Spl (SINGLETON AND MANGELSDORF 1940, BRIEGER 1945b). The action of a gametophyte factor altering the segregation of waxy (perhaps Ga3) is increased by the presence of the sul factor which thus acts as a modifier (BRINCK AND BURNHAM 1927). A polyfactorial case of gametophyte competition has been found by JONES (1922) and analysed by DEMEREC (1929) in rice pop corn which rejects the pollen tubes of other types of corn. Preference for selfing or for brothers-sister mating and partial elimination of other pollen tubes has been described by BRIEGER (1936). 7) HARLAND'S (1943) very ingenious idea is discussed to use pollen tube factors in applied genetics in order to build up an obstacle to natural crossing as a consequence of the rapid pollen tube growth after selfing. Unfortunately, HARLAND could not obtain the experimental proof of the praticability of his idea, during his experiments on selection for minor modifiers for pollen tube grouth in cotton. In maize it should be possible to employ gametophyte factors to build up lines with preference for crossing, though the method should hardly be of any practical advantage.