928 resultados para Topic segmentation
Resumo:
Le site Gaudreau est un site perturbé et à occupations multiples situé dans le sud-est du Québec, et présente des occupations datant du Paléoindien Récent jusqu’à la période historique. Les occupations Archaïques du site, noté par la présence de bifaces diagnostiques de l’Archaïque Supérieur et de l’Archaïque Terminal et par des Macrooutils de l’Archaïque Moyen et de l’Archaïque Supérieur, sont le sujet principal de ce mémoire. Puisqu’aucune occupation ne peut être différencié horizontalement ni verticalement, et qu’aucun objet non-diagnostique ne peut être associé avec certitude, seul un échantillon de 32 objets ont été observés. Étant donné la faible taille de l’échantillon analysé, il est fort probable qu’un plus grand nombre de sources de matières premières aient été utilisés durant les occupations de l’Archaïque. Toutefois, un réseau de matières premières lithiques similaire à ceux des sites du Lac Mégantic a été observé, avec une forte représentation de la rhyolite Kineo-Traveller et des cherts Appalachiens. Des cherts des Grands Lacs et le quartzite de Cheshire sont aussi présents. Le mudstone silicifié d’origine locale et le quartz sont par contre faiblement représentés dans l’échantillon, probablement dû à un biais de proximité de source. L’analyse technique de l’échantillon, sans contrôle pour les pratiques techno-économiques, dénote plusieurs récurrences techniques à l’intérieur des unités typologiques, sans toutefois appuyer des différences récurrentes significatives entre les matières premières de régions différentes. À cause de la taille de l’échantillon et du contexte perturbé, la pertinence des fortes similarités entre certains objets est douteuse. La segmentation interpersonnelle des chaînes opératoires ne pouvait être déterminée dans l’échantillon. Cependant, les résultats incitent plutôt à croire que les matières premières devaient circuler sous diverses formes. Il peut être considéré que, en dehors des matières premières locales, les occupants Archaïques du site Gaudreau n’avaient pas d’accès direct aux matières premières exogènes.
Resumo:
L’échocardiographie et l’imagerie par résonance magnétique sont toutes deux des techniques non invasives utilisées en clinique afin de diagnostiquer ou faire le suivi de maladies cardiaques. La première mesure un délai entre l’émission et la réception d’ultrasons traversant le corps, tandis que l’autre mesure un signal électromagnétique généré par des protons d’hydrogène présents dans le corps humain. Les résultats des acquisitions de ces deux modalités d’imagerie sont fondamentalement différents, mais contiennent dans les deux cas de l’information sur les structures du coeur humain. La segmentation du ventricule gauche consiste à délimiter les parois internes du muscle cardiaque, le myocarde, afin d’en calculer différentes métriques cliniques utiles au diagnostic et au suivi de différentes maladies cardiaques, telle la quantité de sang qui circule à chaque battement de coeur. Suite à un infarctus ou autre condition, les performances ainsi que la forme du coeur en sont affectées. L’imagerie du ventricule gauche est utilisée afin d’aider les cardiologues à poser les bons diagnostics. Cependant, dessiner les tracés manuels du ventricule gauche requiert un temps non négligeable aux cardiologues experts, d’où l’intérêt pour une méthode de segmentation automatisée fiable et rapide. Ce mémoire porte sur la segmentation du ventricule gauche. La plupart des méthodes existantes sont spécifiques à une seule modalité d’imagerie. Celle proposée dans ce document permet de traiter rapidement des acquisitions provenant de deux modalités avec une précision de segmentation équivalente au tracé manuel d’un expert. Pour y parvenir, elle opère dans un espace anatomique, induisant ainsi une forme a priori implicite. L’algorithme de Graph Cut, combiné avec des stratégies telles les cartes probabilistes et les enveloppes convexes régionales, parvient à générer des résultats qui équivalent (ou qui, pour la majorité des cas, surpassent) l’état de l’art ii Sommaire au moment de la rédaction de ce mémoire. La performance de la méthode proposée, quant à l’état de l’art, a été démontrée lors d’un concours international. Elle est également validée exhaustivement via trois bases de données complètes en se comparant aux tracés manuels de deux experts et des tracés automatisés du logiciel Syngovia. Cette recherche est un projet collaboratif avec l’Université de Bourgogne, en France.
Resumo:
Monitoring agricultural crops constitutes a vital task for the general understanding of land use spatio-temporal dynamics. This paper presents an approach for the enhancement of current crop monitoring capabilities on a regional scale, in order to allow for the analysis of environmental and socio-economic drivers and impacts of agricultural land use. This work discusses the advantages and current limitations of using 250m VI data from the Moderate Resolution Imaging Spectroradiometer (MODIS) for this purpose, with emphasis in the difficulty of correctly analyzing pixels whose temporal responses are disturbed due to certain sources of interference such as mixed or heterogeneous land cover. It is shown that the influence of noisy or disturbed pixels can be minimized, and a much more consistent and useful result can be attained, if individual agricultural fields are identified and each field's pixels are analyzed in a collective manner. As such, a method is proposed that makes use of image segmentation techniques based on MODIS temporal information in order to identify portions of the study area that agree with actual agricultural field borders. The pixels of each portion or segment are then analyzed individually in order to estimate the reliability of the temporal signal observed and the consequent relevance of any estimation of land use from that data. The proposed method was applied in the state of Mato Grosso, in mid-western Brazil, where extensive ground truth data was available. Experiments were carried out using several supervised classification algorithms as well as different subsets of land cover classes, in order to test the methodology in a comprehensive way. Results show that the proposed method is capable of consistently improving classification results not only in terms of overall accuracy but also qualitatively by allowing a better understanding of the land use patterns detected. It thus provides a practical and straightforward procedure for enhancing crop-mapping capabilities using temporal series of moderate resolution remote sensing data.
Resumo:
The aim of this thesis project is to automatically localize HCC tumors in the human liver and subsequently predict if the tumor will undergo microvascular infiltration (MVI), the initial stage of metastasis development. The input data for the work have been partially supplied by Sant'Orsola Hospital and partially downloaded from online medical databases. Two Unet models have been implemented for the automatic segmentation of the livers and the HCC malignancies within it. The segmentation models have been evaluated with the Intersection-over-Union and the Dice Coefficient metrics. The outcomes obtained for the liver automatic segmentation are quite good (IOU = 0.82; DC = 0.35); the outcomes obtained for the tumor automatic segmentation (IOU = 0.35; DC = 0.46) are, instead, affected by some limitations: it can be state that the algorithm is almost always able to detect the location of the tumor, but it tends to underestimate its dimensions. The purpose is to achieve the CT images of the HCC tumors, necessary for features extraction. The 14 Haralick features calculated from the 3D-GLCM, the 120 Radiomic features and the patients' clinical information are collected to build a dataset of 153 features. Now, the goal is to build a model able to discriminate, based on the features given, the tumors that will undergo MVI and those that will not. This task can be seen as a classification problem: each tumor needs to be classified either as “MVI positive” or “MVI negative”. Techniques for features selection are implemented to identify the most descriptive features for the problem at hand and then, a set of classification models are trained and compared. Among all, the models with the best performances (around 80-84% ± 8-15%) result to be the XGBoost Classifier, the SDG Classifier and the Logist Regression models (without penalization and with Lasso, Ridge or Elastic Net penalization).
Resumo:
This thesis focuses on automating the time-consuming task of manually counting activated neurons in fluorescent microscopy images, which is used to study the mechanisms underlying torpor. The traditional method of manual annotation can introduce bias and delay the outcome of experiments, so the author investigates a deep-learning-based procedure to automatize this task. The author explores two of the main convolutional-neural-network (CNNs) state-of-the-art architectures: UNet and ResUnet family model, and uses a counting-by-segmentation strategy to provide a justification of the objects considered during the counting process. The author also explores a weakly-supervised learning strategy that exploits only dot annotations. The author quantifies the advantages in terms of data reduction and counting performance boost obtainable with a transfer-learning approach and, specifically, a fine-tuning procedure. The author released the dataset used for the supervised use case and all the pre-training models, and designed a web application to share both the counting process pipeline developed in this work and the models pre-trained on the dataset analyzed in this work.
Resumo:
Radiation dose in x-ray computed tomography (CT) has become a topic of great interest due to the increasing number of CT examinations performed worldwide. In fact, CT scans are responsible of significant doses delivered to the patients, much larger than the doses due to the most common radiographic procedures. This thesis work, carried out at the Laboratory of Medical Technology (LTM) of the Rizzoli Orthopaedic Institute (IOR, Bologna), focuses on two primary objectives: the dosimetric characterization of the tomograph present at the IOR and the optimization of the clinical protocol for hip arthroplasty. In particular, after having verified the reliability of the dose estimates provided by the system, we compared the estimates of the doses delivered to 10 patients undergoing CT examination for the pre-operative planning of hip replacement with the Diagnostic Reference Level (DRL) for an osseous pelvis examination. Out of 10 patients considered, only for 3 of them the doses were lower than the DRL. Therefore, the necessity to optimize the clinical protocol emerged. This optimization was investigated using a human femur from a cadaver. Quantitative analysis and comparison of 3D reconstructions were made, after having performed manual segmentation of the femur from different CT acquisitions. Dosimetric simulations of the CT acquisitions on the femur were also made and associated to the accuracy of the 3D reconstructions, to analyse the optimal combination of CT acquisition parameters. The study showed that protocol optimization both in terms of Hausdorff distance and in terms of effective dose (ED) to the patient may be realized simply by modifying the value of the pitch in the protocol, by choosing between 0.98 and 1.37.
Resumo:
To compare time and risk to biochemical recurrence (BR) after radical prostatectomy of two chronologically different groups of patients using the standard and the modified Gleason system (MGS). Cohort 1 comprised biopsies of 197 patients graded according to the standard Gleason system (SGS) in the period 1997/2004, and cohort 2, 176 biopsies graded according to the modified system in the period 2005/2011. Time to BR was analyzed with the Kaplan-Meier product-limit analysis and prediction of shorter time to recurrence using univariate and multivariate Cox proportional hazards model. Patients in cohort 2 reflected time-related changes: striking increase in clinical stage T1c, systematic use of extended biopsies, and lower percentage of total length of cancer in millimeter in all cores. The MGS used in cohort 2 showed fewer biopsies with Gleason score ≤ 6 and more biopsies of the intermediate Gleason score 7. Time to BR using the Kaplan-Meier curves showed statistical significance using the MGS in cohort 2, but not the SGS in cohort 1. Only the MGS predicted shorter time to BR on univariate analysis and on multivariate analysis was an independent predictor. The results favor that the 2005 International Society of Urological Pathology modified system is a refinement of the Gleason grading and valuable for contemporary clinical practice.
Resumo:
Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.2 ± 2.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors.
Resumo:
Phase I trials use a small number of patients to define a maximum tolerated dose (MTD) and the safety of new agents. We compared data from phase I and registration trials to determine whether early trials predicted later safety and final dose. We searched the U.S. Food and Drug Administration (FDA) website for drugs approved in nonpediatric cancers (January 1990-October 2012). The recommended phase II dose (R2PD) and toxicities from phase I were compared with doses and safety in later trials. In 62 of 85 (73%) matched trials, the dose from the later trial was within 20% of the RP2D. In a multivariable analysis, phase I trials of targeted agents were less predictive of the final approved dose (OR, 0.2 for adopting ± 20% of the RP2D for targeted vs. other classes; P = 0.025). Of the 530 clinically relevant toxicities in later trials, 70% (n = 374) were described in phase I. A significant relationship (P = 0.0032) between increasing the number of patients in phase I (up to 60) and the ability to describe future clinically relevant toxicities was observed. Among 28,505 patients in later trials, the death rate that was related to drug was 1.41%. In conclusion, dosing based on phase I trials was associated with a low toxicity-related death rate in later trials. The ability to predict relevant toxicities correlates with the number of patients on the initial phase I trial. The final dose approved was within 20% of the RP2D in 73% of assessed trials.
Resumo:
The possible existence of a sign-changing gap symmetry in BaFe2As2-derived superconductors (SC) has been an exciting topic of research in the last few years. To further investigate this subject we combine Electron Spin Resonance (ESR) and pressure-dependent transport measurements to investigate magnetic pair-breaking effects on BaFe1.9M0.1As2 (M = Mn, Co, Cu, and Ni) single crystals. An ESR signal, indicative of the presence of localized magnetic moments, is observed only for M = Cu and Mn compounds, which display very low SC transition temperature (Tc) and no SC, respectively. From the ESR analysis assuming the absence of bottleneck effects, the microscopic parameters are extracted to show that this reduction of Tc cannot be accounted by the Abrikosov-Gorkov pair-breaking expression for a sign-preserving gap function. Our results reveal an unconventional spin- and pressure-dependent pair-breaking effect and impose strong constraints on the pairing symmetry of these materials.
Resumo:
Reversible phosphorylation of proteins, performed by kinases and phosphatases, is the major post translational protein modification in eukaryotic cells. This intracellular event represents a critical regulatory mechanism of several signaling pathways and can be related to a vast array of diseases, including cancer. Cancer research has produced increasing evidence that kinase and phosphatase activity can be compromised by mutations and also by miRNA silencing, performed by small non-coding and endogenously produced RNA molecules that lead to translational repression. miRNAs are believed to target about one-third of human mRNAs while a single miRNA may target about 200 transcripts simultaneously. Regulation of the phosphorylation balance by miRNAs has been a topic of intense research over the last years, spanning topics going as far as cancer aggressiveness and chemotherapy resistance. By addressing recent studies that have shown miRNA expression patterns as phenotypic signatures of cancers and how miRNA influence cellular processes such as apoptosis, cell cycle control, angiogenesis, inflammation and DNA repair, we discuss how kinases, phosphatases and miRNAs cooperatively act in cancer biology.
Resumo:
Physical exercise is recommended for all healthy pregnant women. Regular practice of exercises during pregnancy can provide many physical and psychological benefits, with no evidence of adverse outcomes for the fetus or the newborn when exercise is performed at mild to moderate intensity. However, few pregnant women engage in this practice and many still have fears and doubts about the safety of exercise. The objective of the present study was to inform the professionals who provide care for Brazilian pregnant women about the current recommendations regarding physical exercise during pregnancy based on the best scientific evidence available. In view of the perception that few systematic models are available about this topic and after performing several studies in this specific area, we assembled practical information of interest to both the professionals and the pregnant women. We also provide recommendations about the indications, contraindications, modalities (aerobics, resistance training, stretching and pelvic floor training), frequency, intensity and duration indicated for each gestational trimester. The review addresses physical exercise recommendation both for low risk pregnant women and for special populations, such as athletes and obese, hypertensive and diabetic subjects. The advantages of an active and healthy lifestyle should be always reinforced during and after gestation since pregnancy is an appropriate period to introduce new habits because pregnant women are usually more motivated to adhere to recommendations. Thus, routine exams, frequent returns and supervision are recommended in order to provide new guidelines that will have long-term beneficial effects for both mother and child.
Resumo:
to analyze the factors associated with the underreporting on the part of nurses within Primary Health Care of abuse against children and adolescents. cross-sectional study with 616 nurses. A questionnaire addressed socio-demographic data, profession, instrumentation and knowledge on the topic, identification and reporting of abuse cases. Bivariate and multivariate logistic regression was used. female nurses, aged between 21 and 32 years old, not married, with five or more years since graduation, with graduate studies, and working for five or more years in PHC predominated. The final regression model showed that factors such as working for five or more years, having a reporting form within the PHC unit, and believing that reporting within Primary Health Care is an advantage, facilitate reporting. the study's results may, in addition to sensitizing nurses, support management professionals in establishing strategies intended to produce compliance with reporting as a legal device that ensures the rights of children and adolescents.
Resumo:
12 Suppl 1
Resumo:
Dulce de leche samples available in the Brazilian market were submitted to sensory profiling by quantitative descriptive analysis and acceptance test, as well sensory evaluation using the just-about-right scale and purchase intent. External preference mapping and the ideal sensory characteristics of dulce de leche were determined. The results were also evaluated by principal component analysis, hierarchical cluster analysis, partial least squares regression, artificial neural networks, and logistic regression. Overall, significant product acceptance was related to intermediate scores of the sensory attributes in the descriptive test, and this trend was observed even after consumer segmentation. The results obtained by sensometric techniques showed that optimizing an ideal dulce de leche from the sensory standpoint is a multidimensional process, with necessary adjustments on the appearance, aroma, taste, and texture attributes of the product for better consumer acceptance and purchase. The optimum dulce de leche was characterized by high scores for the attributes sweet taste, caramel taste, brightness, color, and caramel aroma in accordance with the preference mapping findings. In industrial terms, this means changing the parameters used in the thermal treatment and quantitative changes in the ingredients used in formulations.