957 resultados para Tanks-in-series Model
Resumo:
We examine the event statistics obtained from two differing simplified models for earthquake faults. The first model is a reproduction of the Block-Slider model of Carlson et al. (1991), a model often employed in seismicity studies. The second model is an elastodynamic fault model based upon the Lattice Solid Model (LSM) of Mora and Place (1994). We performed simulations in which the fault length was varied in each model and generated synthetic catalogs of event sizes and times. From these catalogs, we constructed interval event size distributions and inter-event time distributions. The larger, localised events in the Block-Slider model displayed the same scaling behaviour as events in the LSM however the distribution of inter-event times was markedly different. The analysis of both event size and inter-event time statistics is an effective method for comparative studies of differing simplified models for earthquake faults.
Resumo:
We have previously shown that complement factor 5a(C5a) plays a role in the pathogenesis of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats by using the selective, orally active C5a antagonist AcF-[OP(D-Cha) WR]. This study tested the efficacy and potency of a new C5a antagonist, hydrocinnamate (HC)-[OP(D-Cha) WR], which has limited intestinal lumenal metabolism, in this model of colitis. Analogs of AcF-[OP(D-Cha) WR] were examined for their susceptibility to alimentary metabolism in the rat using intestinal mucosal washings. One metabolically stable analog, HC-[OP(D-Cha)WR], was then evaluated pharmacokinetically and investigated at a range of doses (0.03 - 10 mg/kg/ day p.o.) in the 8-day rat TNBS- colitis model, against the comparator drug AcF-[OP(D-Cha) WR]. Using various amino acid substitutions, it was determined that the AcF moiety of AcF-[OP(D-Cha) WR] was responsible for the metabolic instability of the compound in intestinal mucosal washings. The analog HC-[OP( D-Cha) WR], equiactive in vitro to AcF-[OP(D-Cha) WR], was resistant to intestinal metabolism, but it displayed similar oral bioavailability to AcF-[OP(D-Cha) WR]. However, in the rat TNBS- colitis model, HC-[OP(D-Cha) WR] was effective at reducing mortality, colon edema, colon macroscopic scores, and increasing food consumption and body weights, at 10- to 30- fold lower oral doses than AcF-[OP( D-Cha) WR]. These studies suggest that resistance to intestinal metabolism by HC-[OP(D-Cha) WR] may result in increased local concentrations of the drug in the colon, thus affording efficacy with markedly lower oral doses than AcF-[OP(D-Cha) WR] against TNBS-colitis. This large increase in potency and high efficacy of this compound makes it a potential candidate for clinical development against intestinal diseases such as inflammatory bowel disease.
Resumo:
Radio-frequency ( RF) coils are designed such that they induce homogeneous magnetic fields within some region of interest within a magnetic resonance imaging ( MRI) scanner. Loading the scanner with a patient disrupts the homogeneity of these fields and can lead to a considerable degradation of the quality of the acquired image. In this paper, an inverse method is presented for designing RF coils, in which the presence of a load ( patient) within the MRI scanner is accounted for in the model. To approximate the finite length of the coil, a Fourier series expansion is considered for the coil current density and for the induced fields. Regularization is used to solve this ill-conditioned inverse problem for the unknown Fourier coefficients. That is, the error between the induced and homogeneous target fields is minimized along with an additional constraint, chosen in this paper to represent the curvature of the coil windings. Smooth winding patterns are obtained for both unloaded and loaded coils. RF fields with a high level of homogeneity are obtained in the unloaded case and a limit to the level of homogeneity attainable is observed in the loaded case.
Resumo:
Topological measures of large-scale complex networks are applied to a specific artificial regulatory network model created through a whole genome duplication and divergence mechanism. This class of networks share topological features with natural transcriptional regulatory networks. Specifically, these networks display scale-free and small-world topology and possess subgraph distributions similar to those of natural networks. Thus, the topologies inherent in natural networks may be in part due to their method of creation rather than being exclusively shaped by subsequent evolution under selection. The evolvability of the dynamics of these networks is also examined by evolving networks in simulation to obtain three simple types of output dynamics. The networks obtained from this process show a wide variety of topologies and numbers of genes indicating that it is relatively easy to evolve these classes of dynamics in this model. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The effects of an experimental model of hydrogen-peroxide-induced foot pad oedema on indices of oxidative damage to biomolecules have been investigated. We have demonstrated increased levels of fluorescent protein and lipid peroxides occurring in plasma at 24 and 48 h post-injection. In addition, a decrease in the degree of galactosylation of IgG was observed which kinetically related the degree of inflammation and to the increase in protein autofluorescence (a specific index of oxidative damage). The effects of ebselen, a novel organoselenium compound which protects against oxidative tissue injury in a glutathione-peroxidase-like manner, have also been examined in this model. Pretreatment of animals with a dose of 50 mg/kg ebselen afforded significant and selective protection against lipid peroxidation only. This effect may contribute to the anti-inflammatory effect of this agent in hydroperoxide-linked tissue damage.
Resumo:
Recent discussion of the knowledge-based economy draws increasingly attention to the role that the creation and management of knowledge plays in economic development. Development of human capital, the principal mechanism for knowledge creation and management, becomes a central issue for policy-makers and practitioners at the regional, as well as national, level. Facing competition both within and across nations, regional policy-makers view human capital development as a key to strengthening the positions of their economies in the global market. Against this background, the aim of this study is to go some way towards answering the question of whether, and how, investment in education and vocational training at regional level provides these territorial units with comparative advantages. The study reviews literature in economics and economic geography on economic growth (Chapter 2). In growth model literature, human capital has gained increased recognition as a key production factor along with physical capital and labour. Although leaving technical progress as an exogenous factor, neoclassical Solow-Swan models have improved their estimates through the inclusion of human capital. In contrast, endogenous growth models place investment in research at centre stage in accounting for technical progress. As a result, they often focus upon research workers, who embody high-order human capital, as a key variable in their framework. An issue of discussion is how human capital facilitates economic growth: is it the level of its stock or its accumulation that influences the rate of growth? In addition, these economic models are criticised in economic geography literature for their failure to consider spatial aspects of economic development, and particularly for their lack of attention to tacit knowledge and urban environments that facilitate the exchange of such knowledge. Our empirical analysis of European regions (Chapter 3) shows that investment by individuals in human capital formation has distinct patterns. Those regions with a higher level of investment in tertiary education tend to have a larger concentration of information and communication technology (ICT) sectors (including provision of ICT services and manufacture of ICT devices and equipment) and research functions. Not surprisingly, regions with major metropolitan areas where higher education institutions are located show a high enrolment rate for tertiary education, suggesting a possible link to the demand from high-order corporate functions located there. Furthermore, the rate of human capital development (at the level of vocational type of upper secondary education) appears to have significant association with the level of entrepreneurship in emerging industries such as ICT-related services and ICT manufacturing, whereas such association is not found with traditional manufacturing industries. In general, a high level of investment by individuals in tertiary education is found in those regions that accommodate high-tech industries and high-order corporate functions such as research and development (R&D). These functions are supported through the urban infrastructure and public science base, facilitating exchange of tacit knowledge. They also enjoy a low unemployment rate. However, the existing stock of human and physical capital in those regions with a high level of urban infrastructure does not lead to a high rate of economic growth. Our empirical analysis demonstrates that the rate of economic growth is determined by the accumulation of human and physical capital, not by level of their existing stocks. We found no significant effects of scale that would favour those regions with a larger stock of human capital. The primary policy implication of our study is that, in order to facilitate economic growth, education and training need to supply human capital at a faster pace than simply replenishing it as it disappears from the labour market. Given the significant impact of high-order human capital (such as business R&D staff in our case study) as well as the increasingly fast pace of technological change that makes human capital obsolete, a concerted effort needs to be made to facilitate its continuous development.
Resumo:
Molecular transport in phase space is crucial for chemical reactions because it defines how pre-reactive molecular configurations are found during the time evolution of the system. Using Molecular Dynamics (MD) simulated atomistic trajectories we test the assumption of the normal diffusion in the phase space for bulk water at ambient conditions by checking the equivalence of the transport to the random walk model. Contrary to common expectations we have found that some statistical features of the transport in the phase space differ from those of the normal diffusion models. This implies a non-random character of the path search process by the reacting complexes in water solutions. Our further numerical experiments show that a significant long period of non-stationarity in the transition probabilities of the segments of molecular trajectories can account for the observed non-uniform filling of the phase space. Surprisingly, the characteristic periods in the model non-stationarity constitute hundreds of nanoseconds, that is much longer time scales compared to typical lifetime of known liquid water molecular structures (several picoseconds).
Resumo:
Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::strr null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::strr. Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits.
Resumo:
The thesis investigates the properties of two trends or time series which formed a:part of the Co-Citation bibliometric model "X~Ray Crystallography and Protein Determination in 1978, 1980 and 1982". This model was one of several created for the 1983 ABRC Science Policy Study which aimed to test the utility of bibliometric models in a national science policy context. The outcome of the validation part of that study proved to be especially favourable concerning the utility of trend data, which purport to model the development of speciality areas in science over time. This assessment could have important implications for the use of such data in policy formulation. However one possible problem with the Science Policy Study's conclusions was that insufficient time was available in the study for an in-depth analysis of the data. The thesis aims to continue the validation begun in the ABRC study by providing a detailed.examination of the characteristics of the data contained in the Trends numbered 11 and 44 in the model. A novel methodology for the analysis of the properties of the trends with respect to their literature content is presented. This is followed by an assessment based on questionnaire and interview data, of the ability of Trend 44 to realistically model the historical development of the field of mobile genetic elements research over time, with respect to its scientific content and the activities of its community of researchers. The results of these various analyses are then used to evaluate the strenghts and weaknesses of a trend or time series approach to the modelling of the activities of scientifiic fields. A critical evaluation of the origins of the discovered strengths and weaknesses.in the assumptions underlying the techniques used to generate trends from co-citation data is provided. Possible improvements. to the modelling techniques are discussed.
Resumo:
We study the persistence phenomenon in a socio-econo dynamics model using computer simulations at a nite temperature on hypercubic lattices in dimensions up to ve. The model includes a \social" local eld which contains the magnetization at time t. The nearest neighbour quenched interactions are drawn from a binary distribution which is a function of the bond concentration, p. The decay of the persistence probability in the model depends on both the spatial dimension and p. We nd no evidence of \blocking" in this model. We also discuss the implications of our results for possible applications in the social and economic elds. It is suggested that the absence, or otherwise, of blocking could be used as a criterion to decide on the validity of a given model in dierent scenarios.
Resumo:
Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.
Resumo:
It is now recognized that astrocytes participate in synaptic communication through intimate interactions with neurons. A principal mechanism is through the release of gliotransmitters (GTs) such as ATP, D-serine and most notably, glutamate, in response to astrocytic calcium elevations. We and others have shown that amyloid-β (Aβ), the toxic trigger for Alzheimer's disease (AD), interacts with hippocampal α7 nicotinic acetylcholine receptors (nAChRs). Since α7nAChRs are highly permeable to calcium and are expressed on hippocampal astrocytes, we investigated whether Aβ could activate astrocytic α7nAChRs in hippocampal slices and induce GT glutamate release. We found that biologically-relevant concentrations of Aβ1-42 elicited α7nAChR-dependent calcium elevations in hippocampal CA1 astrocytes and induced NMDAR-mediated slow inward currents (SICs) in CA1 neurons. In the Tg2576 AD mouse model for Aβ over-production and accumulation, we found that spontaneous astrocytic calcium elevations were of higher frequency compared to wildtype (WT). The frequency and kinetic parameters of AD mice SICs indicated enhanced gliotransmission, possibly due to increased endogenous Aβ observed in this model. Activation of α7nAChRs on WT astrocytes increased spontaneous inward currents on pyramidal neurons while α7nAChRs on astrocytes of AD mice were abrogated. These findings suggest that, at an age that far precedes the emergence of cognitive deficits and plaque deposition, this mouse model for AD-like amyloidosis exhibits augmented astrocytic activity and glutamate GT release suggesting possible repercussions for preclinical AD hippocampal neural networks that contribute to subsequent cognitive decline. © 2013 Pirttimaki et al.
Resumo:
Zambia and many other countries in Sub-Saharan Africa face a key challenge of sustaining high levels of coverage of AIDS treatment under prospects of dwindling global resources for HIV/AIDS treatment. Policy debate in HIV/AIDS is increasingly paying more focus to efficiency in the use of available resources. In this chapter, we apply Data Envelopment Analysis (DEA) to estimate short term technical efficiency of 34 HIV/AIDS treatment facilities in Zambia. The data consists of input variables such as human resources, medical equipment, building space, drugs, medical supplies, and other materials used in providing HIV/AIDS treatment. Two main outputs namely, numbers of ART-years (Anti-Retroviral Therapy-years) and pre-ART-years are included in the model. Results show the mean technical efficiency score to be 83%, with great variability in efficiency scores across the facilities. Scale inefficiency is also shown to be significant. About half of the facilities were on the efficiency frontier. We also construct bootstrap confidence intervals around the efficiency scores.
Resumo:
Activated sludge basins (ASBs) are a key-step in wastewater treatment processes that are used to eliminate biodegradable pollution from the water discharged to the natural environment. Bacteria found in the activated sludge consume and assimilate nutrients such as carbon, nitrogen and phosphorous under specific environmental conditions. However, applying the appropriate agitation and aeration regimes to supply the environmental conditions to promote the growth of the bacteria is not easy. The agitation and aeration regimes that are applied to activated sludge basins have a strong influence on the efficacy of wastewater treatment processes. The major aims of agitation by submersible mixers are to improve the contact between biomass and wastewater and the prevention of biomass settling. They induce a horizontal flow in the oxidation ditch, which can be quantified by the mean horizontal velocity. Mean values of 0.3-0.35 m s-1 are recommended as a design criteria to ensure best conditions for mixing and aeration (Da Silva, 1994). To give circulation velocities of this order of magnitude, the positioning and types of mixers are chosen from the plant constructors' experience and the suppliers' data for the impellers. Some case studies of existing plants have shown that measured velocities were not in the range that was specified in the plant design. This illustrates that there is still a need for design and diagnosis approach to improve process reliability by eliminating or reducing the number of short circuits, dead zones, zones of inefficient mixing and poor aeration. The objective of the aeration is to facilitate the quick degradation of pollutants by bacterial growth. To achieve these objectives a wastewater treatment plant must be adequately aerated; thus resulting in 60-80% of all energetic consummation being dedicated to the aeration alone (Juspin and Vasel, 2000). An earlier study (Gillot et al., 1997) has illustrated the influence that hydrodynamics have on the aeration performance as measure by the oxygen transfer coefficient. Therefore, optimising the agitation and aeration systems can enhance the oxygen transfer coefficient and consequently reduce the operating costs of the wastewater treatment plant. It is critically important to correctly estimate the mass transfer coefficient as any errors could result in the simulations of biological activity not being physically representative. Therefore, the transfer process was rigorously examined in several different types of process equipment to determine the impact that different hydrodynamic regimes and liquid-side film transfer coefficients have on the gas phase and the mass transfer of oxygen. To model the biological activity occurring in ASBs, several generic biochemical reaction models have been developed to characterise different biochemical reaction processes that are known as Activated Sludge Models, ASM (Henze et al., 2000). The ASM1 protocol was selected to characterise the impact of aeration on the bacteria consuming and assimilating ammonia and nitrate in the wastewater. However, one drawback of ASM protocols is that the hydrodynamics are assumed to be uniform by the use of perfectly mixed, plug flow reactors or as a number of perfectly mixed reactors in series. This makes it very difficult to identify the influence of mixing and aeration on oxygen mass transfer and biological activity. Therefore, to account for the impact of local gas-liquid mixing regime on the biochemical activity Computational Fluid Dynamics (CFD) was used by applying the individual ASM1 reaction equations as the source terms to a number of scalar equations. Thus, the application of ASM1 to CFD (FLUENT) enabled the investigation of the oxygen transfer efficiency and the carbon & nitrogen biological removal in pilot (7.5 cubic metres) and plant scale (6000 cubic metres) ASBs. Both studies have been used to validate the effect that the hydrodynamic regime has on oxygen mass transfer (the circulation velocity and mass transfer coefficient) and the effect that this had on the biological activity on pollutants such as ammonia and nitrate (Cartland Glover et al., 2005). The work presented here is one part to of an overall approach for improving the understanding of ASBs and the impact that they have in terms of the hydraulic and biological performance on the overall wastewater treatment process. References CARTLAND GLOVER G., PRINTEMPS C., ESSEMIANI K., MEINHOLD J., (2005) Modelling of wastewater treatment plants ? How far shall we go with sophisticated modelling tools? 3rd IWA Leading-Edge Conference & Exhibition on Water and Wastewater Treatment Technologies, 6-8 June 2005, Sapporo, Japan DA SILVA G. (1994). Eléments d'optimisation du transfert d'oxygène par fines bulles et agitateur séparé en chenal d'oxydation. PhD Thesis. CEMAGREF Antony ? France. GILLOT S., DERONZIER G., HEDUIT A. (1997). Oxygen transfer under process conditions in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. WEFTEC, Chicago, USA. HENZE M., GUJER W., MINO T., van LOOSDRECHT M., (2000). Activated Sludge Models ASM1, ASM2, ASM2D and ASM3, Scientific and Technical Report No. 9. IWA Publishing, London, UK. JUSPIN H., VASEL J.-L. (2000). Influence of hydrodynamics on oxygen transfer in the activated sludge process. IWA, Paris - France.
Resumo:
This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian-Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). The DME-SR reactions scheme and kinetics in the presence of a bifunctional catalyst of CuO/ZnO/Al2O3+ZSM-5 were incorporated in the model using in-house developed user-defined function. The model was validated by comparing the predictions with experimental data from the literature. The results revealed for the first time detailed CFB reactor hydrodynamics, gas residence time, temperature distribution and product gas composition at a selected operating condition of 300 °C and steam to DME mass ratio of 3 (molar ratio of 7.62). The spatial variation in the gas species concentrations suggests the existence of three distinct reaction zones but limited temperature variations. The DME conversion and hydrogen yield were found to be 87% and 59% respectively, resulting in a product gas consisting of 72 mol% hydrogen. In part II of this study, the model presented here will be used to optimize the reactor design and study the effect of operating conditions on the reactor performance and products.