968 resultados para TOOTH EXTRACTION
Resumo:
Such physicochemical properties of sec-nonylphenoxy acetic acid (CA-100) as the solubility in water, acid dissociation constant in water, dimerization constant in heptane, and distribution constant in organic solvent-water were measured by two-phase titration. The extraction behaviors of scandium (III), yttrium (III), lanthanides (III), and divalent metal ions from hydrochloric acid solutions with CA-100 in heptane have been investigated, and the possibilities of separating scandium (yttrium) from lanthanides and divalent metal ions have been carefully discussed. The stoichiometries of the extracted metal complexes were investigated by the slope-analysis technique. The effect of the nature of diluent on the extraction of yttrium (III) with CA100 has been studied and correlated with the dielectric constant.
Resumo:
The extraction of zinc(II) and cadmium(II) from chloride solution by mixtures of primary amine N1923 and Cyanex272 (HA) was studied. The synergistic effect was observed for the extraction of zinc(II) while no synergistic effect for cadmium(II), which makes it possible to separate zine(II) and cadmium(II) with the mixtures. The results showed that zinc(II) was extracted as (RNH3Cl)(3) . ZnCIA instead of ZnA(2) . 2HA which was extracted by Cyanex272 alone. The extraction mechanism was discussed and the formation constants and thermodynamic functions were determined. The separation factors between zinc(II) and cadmium(II) were calculated.
Resumo:
This paper presents the results of the adsorption of heavy rare earth ions (Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III)) from hydrochloric acid solutions at 30 degreesC by the extraction resin containing 1-hexyl-4-ethyloctyl isopropylphosphonic acid (HEOPPA), which has higher steric hindrance, higher selectivities and lower extraction and stripping acidity than di(2-ethylhexyl)phosphoric acid (DERPA) or 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEH/EHP). The dependence of acid concentration, flow rate and amounts of rare earth ions sorbed on the separation of Er-Tm, Tm-Yb and Er-Tm-Yb mixtures has been studied. The baseline chromatographic separation of Er-Tm-Yb mixture has been observed. Satisfactory results with purity and yield of Tm2O3>99.71% and >71.25%, Er2O3>99-81% and >94.17%, and Yb2O3>99.74% and >89.83%, respectively, have been obtained. The parameters such,as resolution, separation factors and efficiencies have been determined as a function of acidity, loading of rare earth elements and flow rates. The stoichiometry of the extraction of rare earth ions has been suggested as well.
Resumo:
Extraction and interfacial kinetics of Nd3+ and Sm3+ with HER/EHP-kerosene in a hollow fiber membrane extractor were studied. The results show that the extraction reactions in the hollow fiber membrane extractor are the same as those in the liquid-liquid extraction, which can be expressed as a quasi-first-order reaction. The effect of acidity in aqueous phase, concentrations of extractant, Nd3+ and Sm3+ on extraction rate were discussed and the corresponding reaction series were obtained. The reaction equations, reaction rate constants and the separation constant were obtained.
Resumo:
Phase behavior of the extraction system, Cyanex 923-heptane/H2SO4-H2O has been studied. The third phase appeared at different aqueous H2SO4 concentration with varying initial Cyanex 923 concentration and temperature affects its appearance. Almost all of H2SO4 and H2O are extracted into the middle phase. The H2SO4 concentration in the third phase increases with the increasing aqueous acid concentration (C-H2SO4,C-b) while the water content first increases and then reaches a constant value at CH2SO4,(b) = 11.3 mol l(-1). In the region of C-H2SO4,C-b higher than 5.2 mol l(-1), the composition of the middle phase is only related to the equilibrium concentration of H2SO4 in the bottom phase. H2SO4 and H2O are transferred into the middle phase mainly by their coordination with Cyanex 923 when C-H2SO4,C-b is less than 11.3 mol l(-1). When C-H2SO4,C-b is higher than 11.3 mol l(-1), excess H2SO4 is solubilized into the polar layer of the aggregates. In the region considered, the extracted complex changes from C923.H2SO4 to C923 . H2SO4 . H2O and then to C923 . (H2SO4)(2) . H2O.
Resumo:
In the present study, curcumin from Chinese herbal medicine turmeric was determined by capillary electrophoresis with amperometric detection (CE-AD) pretreated by a self-designed, simple, inexpensive solid-phase extraction (SPE) cartridge based on the material of tributyl phosphate resin. An average concentration factor of 9 with the recovery of >80% was achieved when applied to the analysis of curcumin in extracts of turmeric. Under the optimized CE-AD conditions: a running buffer composed of 15 mM phosphate buffer at a pH 9.7, separation voltage at 16 W, injection for 6 s at 9 W and detection at 1.20 V, CE-AD with SPE exhibited low detection limit as 3 - 10(-8) mol/l (SIN = 3), high efficiency of 1.0(.)10(5) N, linear range of 7(.)10(-4) -3(.)10(-6) mol/l (r = 0.9986) for curcumin extracted from light petroleum. The method developed resulted in enhancement of the detection sensitivity and reduction of interference from sample matrix in complicated samples and exhibited the potential application for routine analysis, especially in food, because a relatively complete process of sample treatment and analysis was described.
Resumo:
The Yttrium(III) extraction kinetics and mechanism with secnonylphonoxy acetic acid (CA-100) were investigated by a constant interfacial cell with laminar flow. The studies of interfacial tension and solubility of extractant and effects of the stirring rate, temperature, specific interfacial area and species concentration on the extraction rate showed that the extraction regime was dependent on the extraction conditions and the most probable reaction zone was at the liquid-liquid interface. The rate equation of extracting yttrium by CA-100 in heptane was Rf = k[Y3+]((a))[H(2)A(2)]((o))(0.88)[H+]((a))(-1.08).
Resumo:
The kinetics of RE (La, Gd, Er, Yb and Y) extraction with sec-octylphenoxy acetic acid was investigated using a constant interfacial area cell with laminar flow at 303 K. The natures of the extracted complexes have some effect on the extraction rate which is controlled by the reaction rate of M(III) and extractant molecules at two-phase interface for Er(III), Yb(III) and Y(III), by a mixed chemical reaction-diffusion for Gd(III) and a diffusion for La( III). The extractant molecules tend to adsorb at the interface. So an interfacial extraction reaction model was derived.
Resumo:
Phase behavior of the extraction system, Cyanex 923-heptane/Ce4+-H2SO4 has been studied and compared with Cyanex 923-heptane/H2SO4 System. Cerium(IV) is mainly extracted into the third phase, and its concentration in the third phase first increases with the increasing aqueous acid concentration, reaches maximum and then decreases. At higher acidity, cerium(IV) is hardly extracted in the third phase. The phase behavior and change of the contents of acid and water are similar to those in the acid system. The acid concentration increases with increase of the aqueous acid in the whole extraction region while the water content first decreases with it and then increases after the third phase formation. The third phase has a characteristic lamellar structure formed by the aggregates of Cyanex 923 (.) (H2SO4)(2) (.) H2O as those in the case of acid system. The third phase loaded Ce(IV) has been used to prepare ultrafine CeO2 powder conveniently by precipitation with oxalic acid, and powders with size mostly smaller than 100 nm can be obtained.
Resumo:
Studies of the extraction kinetics of cerium(IV) from H2SO4-HF solutions with Cyanex 923 in n-heptane have been carried out using a constant interfacial area cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The results were compared with those of the system without HF. It was concluded that the addition of HF reduces the activation energy for the forward rate from 46.2 to 36.5 U mol(-1) while it has an opposite effect on the activation energy for the reverse process(the activation energy increased from 23.3 to 90.8 U mol(-1)). Thus, HF can accelerate the rate of cerium(IV) extraction. At the same time, the extraction rate is controlled by a mixed chemical reaction-diffusion rather than by a chemical reaction alone. A rate equation has also been obtained.
Resumo:
A high temperature and high pressure method was used to efficiently and selectively extract metallofullerenes Ln(m)@C-2n,(Ln = Y, Gd, Tb) in a closed stainless steel autoclave under inert gas protection. 1, 2, 3-Trichlorobenzene was found to be more effective and selective for the extraction of Ln@C-82 (Ln=Y, Gd, Tb) from empty fullerenes and other metallofullerene species.
Resumo:
The based membrane extraction of Th4+ and Yb3+ was studied in HBTMPP-heptane using a hollow fibber membrane. The separation method of Th4+ and Yb3+ was proposed by kinetics competition. The separation operation of Th4+ and Yb3+ mixture was carried out by two successive extraction and stripping simultaneously. The concentration ratio of Th4+ to Yb3+ is 16.74 in the stripping solution. The recovery and purity of Th4+ are 71.6% and 95.74% respectively.
Resumo:
Ce4+ extraction rate from aqueous sulphate solutions by Cyanex923 in heptane was studied using a constant interfacial cell with laminar flow at 30 degreesC. The experimental hydrodynamic conditions were chosen and the contribution of diffusion to the measured rate of reaction was minimized. Cerium extraction rate was measured at different chemical composition by varying the concentrations of hydrogen ion, sulphate and Cyanex923. A cerium-Cyanex923(B) extractive is formed at the interface. The data were analyszed in terms of pseudo-first order constants and a reaction mechanism was developed.
Resumo:
A novel method for the highly sensitive determination of perchlorate was proposed. It was based on solvent extraction in the presence of Ru(bpy)(3)(2+) followed by Ru(bpy)(3)(2+) electrochemiluminescent determination. A linear calibration was obtained over the range of 0.1 to 10 mu mol l(-1) with a correlation coefficient of 0.998. The detection limit (S/N = 3) was 5.0 x 10(-8) mol l(-1). The relative standard deviation for 10 replicates of 1 mu mol l(-1) perchlorate was 1.6%. Interference studies suggest that this method is selective for the determination of perchlorate. Application of this method to the highly sensitive determination of other anions is suggested. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Petroleum sulfoxide-NH4SCN extraction chromatography was developed for the separation of Y from other rare earth elements. Some chromatographic parameters were chosen and separation factors between Y and other rare earth elements were determined. A column of resin coated with petroleum sulfoxide was used. The Y in the sample was eluted with NH4SCN, then titrated with EDTA. The recovery was 67%-120% and relative standard deviation +/-4.0%-19.4%. This method can be applied to the determination of trace amounts of rare earth impurities in Y2O3 with a purity of 99.999 9%-99. 999 99%.