969 resultados para THICK DISC
Resumo:
Using spontaneous parametric down-conversion, we produce polarization-entangled states of two photons and characterize them using two-photon tomography to measure the density matrix. A controllable decoherence is imposed on the states by passing the photons through thick, adjustable birefringent elements. When the system is subject to collective decoherence, one particular entangled state is seen to be decoherence-free, as predicted by theory. Such decoherence-free systems may have an important role for the future of quantum computation and information processing.
Resumo:
Accurate determination of the rhizotoxicity of Cu in dilute nutrient solutions is hindered by the difficulty of maintaining constant, pre-determined concentrations of Cu (micromolar) in solution. The critical Cu2+ activity associated with a reduction in the growth of solution-grown cowpea (Vigna unguiculata (L.) Walp. cv Caloona) was determined in a system in which Cu was maintained constant through the use of a cation exchange resin. The growth of roots and shoots was found to be reduced at solution Cu2+ activities ≥ 1.7 µM (corresponding to 90 % maximum growth). Although root growth was most likely reduced due to a direct Cu2+ toxicity, it is considered that the shoot growth reduction is attributable to a decrease in tissue concentrations of K, Ca, Mg, and Fe and the formation of interveinal chlorosis. At high Cu2+ activities, roots were brown in color, short and thick, had bent root tips with cracking of the epidermis and outer cortex, and had local swellings behind the roots tips due to a reduction in cell elongation. Root hair growth was reduced at concentrations lower than that which caused a significant reduction in overall root fresh weight.
Resumo:
The stress corrosion cracking (SCC) initiation process for 4340 high strength steel in distilled water at room temperature was studied using a new kind of instrument: an environmental scanning electron microscope (ESEM). It was found that the applied stress accelerated oxide film formation which has an important influence on the subsequent SCC initiation. SCC was observed to initiate in the following circumstances: (1) cracking of a thick oxide film leading to SCC initiation along metal grain boundaries, (2) the initiation of pits initiating SCC in the metal and (3) SCC initiating from the edge of the specimen. All these three SCC initiation circumstances are consistent with the following model which couples SCC initiation with cracking of a surface protective oxide. There is a dynamic interaction between oxide formation, the applied stress, oxide cracking, pitting and the initiation of SCC. An aspect of the dynamic interaction is cracks forming in a protective surface oxide because of the applied stress, exposing to the water bare metal at the oxide crack tip, and oxidation of the bare metal causing crack healing. Oxide crack healing would be competing with the initiation of intergranular SCC if an oxide crack meets the metal surface at a grain boundary. If the intergranular SCC penetration is sufficiently fast along the metal grain boundary, then the crack yaws open preventing healing of the oxide crack. If intergranular SCC penetration is not sufficiently fast, then the oxidation process could produce sufficient oxide to fill both the stress corrosion crack and the oxide crack; in this case there would be initiation of SCC but only limited propagation of SCC. Stress-induced cracks in very thin oxide can induce pits which initiate SCC, and under some conditions such stress induced cracks in a thin oxide can directly initiate SCC.
Resumo:
The salamanderfish, Lepidogalaxias salamandroides (Galaxiidae, Teleostei) is endemic to southwestern Australia and inhabits shallow, freshwater pools which evaporate during the hot summer months. Burrowing into the substrate in response to falling water levels allows these fish to aestivate for extended periods of time while encapsulated in a mucous cocoon even when the pools contain no water. Only a few minutes after a major rainfall, these fish emerge into relatively clear water which subsequently becomes laden with tannin, turning the water black and reducing the pH to approximately 4.3. As part of a large study of the visual adaptations of this unique species, the retinal and lenticular morphology of the aestivating salamanderfish is examined at the level of the light and electron microscopes. The inner retina is highly vascularised by a complex system of vitreal blood vessels, while the outer retina receives a blood supply by diffusion from a choriocapillaris. This increased retinal blood supply may be an adaptation for reducing the oxygen tension during critical periods of aestivation. Large numbers of Muller cells traverse the thickness of the retina from the inner to the outer limiting membranes. The ganglion cells are arranged in two ill-defined layers, separated from a thick inner nuclear layer containing two layers of horizontal cells by a soma-free inner plexiform layer. The photoreceptors can be divided into three types typical of many early actinopterygian representatives; equal double cones, small single cones and large rods (2:1:1). These photoreceptors are arranged into a unique regular square mosaic comprising a large rod bordered by four equal double cones with a small single cone located at the corner of each repeating unit. The double cones may optimise perception of mobile prey which it tracks by flexion of its head and neck and the large rods may increase sensitivity in the dark tannin-rich waters in which it lives. Each single cone also possesses a dense collection of polysomes and glycogen (a paraboloid) beneath its ellipsoid, the first such finding in teleosts. The retinal pigment epithelium possesses melanosomes, pha,oocytes and a large number of mitochondria. The anatomy of the retina and the photoreceptor mosaic is discussed in relation to the primitive phylogeny of this species and its unique life history.
Resumo:
We present a numerical methodology for the study of convective pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. lit particular, we investigate the occurrence and distribution pattern of temperature gradient driven convective pore-fluid flow and hydrocarbon transport in the Australian North West Shelf basin. The related numerical results have demonstrated that: (1) The finite element method combined with the progressive asymptotic approach procedure is a useful tool for dealing with temperature gradient driven pore-fluid flow and mass transport in fluid-saturated hydrothermal basins; (2) Convective pore-fluid flow generally becomes focused in more permeable layers, especially when the layers are thick enough to accommodate the appropriate convective cells; (3) Large dislocation of strata has a significant influence off the distribution patterns of convective pore;fluid flow, thermal flow and hydrocarbon transport in the North West Shelf basin; (4) As a direct consequence of the formation of convective pore-fluid cells, the hydrocarbon concentration is highly localized in the range bounded by two major faults in the basin.
Resumo:
Background: The ornamental tobacco Nicotiana alata produces a series of proteinase inhibitors (Pls) that are derived from a 43 kDa precursor protein, NaProPl. NaProPl contains six highly homologous repeats that fold to generate six separate structural domains, each corresponding to one of the native Pls. An unusual feature of NaProPl is that the structural domains lie across adjacent repeats and that the sixth Pl domain is generated from fragments of the first and sixth repeats. Although the homology of the repeats suggests that they may have arisen from gene duplication, the observed folding does not appear to support this. This study of the solution structure of a single NaProPl repeat (aPl1) forms a basis for unravelling the mechanism by which this protein may have evolved, Results: The three-dimensional structure of aPl1 closely resembles the triple-stranded antiparallel beta sheet observed in each of the native Pls. The five-residue sequence Glu-Glu-Lys-Lys-Asn, which forms the linker between the six structural domains in NaProPl, exists as a disordered loop in aPl1. The presence of this loop in aPl1 results in a loss of the characteristically flat and disc-like topography of the native inhibitors. Conclusions: A single repeat from NaProPl is capable of folding into a compact globular domain that displays native-like Pl activity. Consequently, it is possible that a similar single-domain inhibitor represents the ancestral protein from which NaProPl evolved.
Resumo:
Poor root development due to constraining soil conditions could be an important factor influencing health of urban trees. Therefore, there is a need for efficient techniques to analyze the spatial distribution of tree roots. An analytical procedure for describing tree rooting patterns from X-ray computed tomography (CT) data is described and illustrated. Large irregularly shaped specimens of undisturbed sandy soil were sampled from Various positions around the base of trees using field impregnation with epoxy resin, to stabilize the cohesionless soil. Cores approximately 200 mm in diameter by 500 mm in height were extracted from these specimens. These large core samples were scanned with a medical X-ray CT device, and contiguous images of soil slices (2 mm thick) were thus produced. X-ray CT images are regarded as regularly-spaced sections through the soil although they are not actual 2D sections but matrices of voxels similar to 0.5 mm x 0.5 mm x 2 mm. The images were used to generate the equivalent of horizontal root contact maps from which three-dimensional objects, assumed to be roots, were reconstructed. The resulting connected objects were used to derive indices of the spatial organization of roots, namely: root length distribution, root length density, root growth angle distribution, root spatial distribution, and branching intensity. The successive steps of the method, from sampling to generation of indices of tree root organization, are illustrated through a case study examining rooting patterns of valuable urban trees. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The ultrastructure of the tegument and tegument-associated microorganisms of the gyliauchenid digenean Gyliauchen nahaensis is described by transmission and scanning electron microscopy. The tegument is devoid of surface spines and is characterized by a moderately folded apical membrane, abundant vesicles, basal mitochondria, a folded basal plasma membrane, and a thick basal matrix. Microorganisms form a dense biofilm on the tegument of the posterodorsal surface and the excretory papilla. At least 7 microbial morphotypes were identified, including eubacteria, spirochaetes, and nanobacteria.
Resumo:
Engineering This investigation examined the rheological (viscosity and yield stress) and material property (density) characteristics of the thickened meal-time and videofluorscopy fluids provided by 10 major metropolitan hospitals. Differences in the thickness of thickened fluids were considered as a source of variability and potential hazard for inter-hospital transfers of dysphagic patients. The results indicated considerable differences in the viscosity, density, and yield stress of both meal-time and videofluoroscopy fluids. In theory, the results suggest that dysphagic patients transferred between hospitals could be placed on inappropriate levels of fluid thickness because of inherent differences in the rheology and material property characteristics of the fluids provided by different hospitals. Slowed improvement or medical complications are potential worst-case scenarios for dysphagic patients if the difference between the thick fluids offered by 2 hospitals are extreme. The investigation outlines the most appropriate way to assess the rheological and material property characteristics of thickened fluids. In addition, it suggests a plan of quality improvement to reduce the variability of the thickness of fluids offered at different hospitals.
Resumo:
The Fornax Spectroscopic Survey will use the Two degree Field spectrograph (2dF) of the Angle-Australian Telescope to obtain spectra for a complete sample of all 14000 objects with 16.5 less than or equal to b(j) less than or equal to 19.7 in a 12 square degree area centred on the Fornax Cluster. The aims of this project include the study of dwarf galaxies in the cluster (both known low surface brightness objects and putative normal surface brightness dwarfs) and a comparison sample of background field galaxies. We will also measure quasars and other active galaxies, any previously unrecognised compact galaxies and a large sample of Galactic stars. By selecting all objects-both stars and galaxies-independent of morphology, we cover a much larger range of surface brightness and scale size than previous surveys. In this paper we first describe the design of the survey. Our targets are selected from UK Schmidt Telescope sky survey plates digitised by the Automated Plate Measuring (APM) facility. We then describe the photometric and astrometric calibration of these data and show that the APM astrometry is accurate enough for use with the 2dF. We also describe a general approach to object identification using cross-correlations which allows us to identify and classify both stellar and galaxy spectra. We present results from the first 2dF field. Redshift distributions and velocity structures are shown for all observed objects in the direction of Fornax, including Galactic stars? galaxies in and around the Fornax Cluster, and for the background galaxy population. The velocity data for the stars show the contributions from the different Galactic components, plus a small tail to high velocities. We find no galaxies in the foreground to the cluster in our 2dF field. The Fornax Cluster is clearly defined kinematically. The mean velocity from the 26 cluster members having reliable redshifts is 1560 +/- 80 km s(-1). They show a velocity dispersion of 380 +/- 50 km s(-1). Large-scale structure can be traced behind the cluster to a redshift beyond z = 0.3. Background compact galaxies and low surface brightness galaxies are found to follow the general galaxy distribution.
Resumo:
The mechanism of growth of silicate films at the air/liquid interface has been investigated in situ by a series of grazing incidence diffraction experiments using a 20 x 25 cm(2) imaging plate as the detector. C(18)TAX (X = Br- or Cl-) has been used as the film templating surfactant. The formation of a layered phase, prior to growth of the hexagonal mesophase in C(18)TABr templated films. has been seen. This layered structure has a significantly shorter d spacing compared to the final hexagonal film (43 versus 48 Angstrom, respectively). The correlation lengths associated with the development of the hexagonal in-plane diffraction spots are much longer in-plane than perpendicular to the air/liquid interface (300 Angstrom versus 50 Angstrom). This implies that the film forms via the growth or aggregation of islands that are initially only a micelle or two thick. which then grow down into the solution.
Resumo:
[1] The physical conditions required to provide for the tectonic stability of cratonic crust and for the relative longevity of deep cratonic lithosphere within a dynamic, convecting mantle are explored through a suite of numerical simulations. The simulations allow chemically distinct continents to reside within the upper thermal boundary layer of a thermally convecting mantle layer. A rheologic formulation, which models both brittle and ductile behavior, is incorporated to allow for plate-like behavior and the associated subduction of oceanic lithosphere. Several mechanisms that may stabilize cratons are considered. The two most often invoked mechanisms, chemical buoyancy and/or high viscosity of cratonic root material, are found to be relatively ineffective if cratons come into contact with subduction zones. High root viscosity can provide for stability and longevity but only within a thick root limit in which the thickness of chemically distinct, high-viscosity cratonic lithosphere exceeds the thickness of old oceanic lithosphere by at least a factor of 2. This end-member implies a very thick mechanical lithosphere for cratons. A high brittle yield stress for cratonic lithosphere as a whole, relative to oceanic lithosphere, is found to be an effective and robust means for providing stability and lithospheric longevity. This mode does not require exceedingly deep strength within cratons. A high yield stress for only the crustal or mantle component of the cratonic lithosphere is found to be less effective as detachment zones can then form at the crust-mantle interface which decreases the longevity potential of cratonic roots. The degree of yield stress variations between cratonic and oceanic lithosphere required for stability and longevity can be decreased if cratons are bordered by continental lithosphere that has a relatively low yield stress, i.e., mobile belts. Simulations that combine all the mechanisms can lead to crustal stability and deep root longevity for model cratons over several mantle overturn times, but the dominant stabilizing factor remains a relatively high brittle yield stress for cratonic lithosphere.
Resumo:
The development of structure perpendicular to and in the plane of the interface has been studied for mesoporous silicate films self-assembled at the air/water interface. The use of constrained X-ray and neutron specular reflectometry has enabled a detailed study of the structural development perpendicular to the interface during the pre-growth phase. Off-specular neutron reflectometry and grazing incidence X-ray diffraction has enabled the in-plane structure to be probed with excellent time resolution. The growth mechanism under the surfactant to silicate source ratios used in this work is clearly due to the self-assembly of micellar and molecular species at the air/liquid interface, resulting in the formation of a planar mesoporous film that is tens of microns thick. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Direct and simultaneous observation of root growth and plant water uptake is difficult because soils are opaque. X-ray imaging techniques such as projection radiography or Computer Tomography (CT) offer a partial alternative to such limitations. Nevertheless, there is a trade-off between resolution, large field-of-view and 3-dimensionality: With the current state of the technology, it is possible to have any two. In this study, we used X-ray transmission through thin-slab systems to monitor transient saturation fields that develop around roots as plants grow. Although restricted to 2-dimensions, this approach offers a large field-of-view together with high spatial and dynamic resolutions. To illustrate the potential of this technology, we grew peas in 1 cm thick containers filled with soil and imaged them at regular intervals. The dynamics of both the root growth and the water content field that developed around the roots could be conveniently monitored. Compared to other techniques such as X-ray CT, our system is relatively inexpensive and easy to implement. It can potentially be applied to study many agronomic problems, such as issues related to the impact of soil constraints (physical, chemical or biological) on root development.
Resumo:
A surfactant-mediated solution route for the obtainment of nanosized rare-earth orthophosphates of different compositions (LaPO(4):Eu(3+), (Y,Gd)PO(4):Eu(3+),LaPO(4):Tm(3+), YPO(4):Tm(3+), and YbPO(4):Er(3+)) is presented, and the implications of the morphology control on the solids properties are discussed. The solids are prepared in water-in-heptane microemulsions, using cetyltrimethylammonium bromide and 1-butanol as the surfactant and cosurfactant; the alteration of the starting microemulsion composition allows the obtainment of similar to 30 nm thick nanorods with variable length. The morphology and the structure of the solids were evaluated through scanning electron microscopy and through powder X-ray diffractometry; dynamic light scattering and thermal analyses were also performed. The obtained materials were also characterized through vibrational (FTIR) and luminescence spectroscopy (emission/excitation, luminescence lifetimes, chromaticity, and quantum efficiency), where the red, blue, and upconversion emissions of the prepared phosphors were evaluated.