933 resultados para Sustainable Development, Road Infrastructure, Project Delivery, Performance Enhancement
Resumo:
In Norway, environmental education (EE) has been part of schools’ curricula since the 1970s. The concept of education for sustainable development (ESD) was introduced after Agenda 21 was introduced at the UN conference on environment and development held in Rio in 1992. The article shows there has been little change in the geography curricula since the concept ESD was introduced, and no important differences are found between curricula for mandatory schooling (classes 1–10) and curricula for upper secondary schools. ESD is mentioned in the geography curricula but without explanation and implementation. Core goals in the general national core curricula may indicate a change to ESD, but they have not been followed in the development of geography curricula in Norway.
Resumo:
The purpose of this research project is to investigate project delivery as it relates to construction projects to help support the Department of Transportation's vision. The project delivery goals of the Agency as it relates to this research include: Fifty percent of construction projects are completed on schedule ; Ninety-five percent of projects are closed out within 270 days ; Seventy-five percent of construction projects are authorized on schedule. The goals of this project are to determine what factors contribute to unsuccessful project delivery and determine how these factors can be improved. This project will mainly investigate Construction roles during the Preconstruction phase of the project as well as examine the project during construction and identify areas that prohibit effective and timely project delvery.
Resumo:
Many studies are documenting positive large-scale species– people correlations (Luck, 2007; Schuldt & Assmann, 2010). The issue is scale dependent: the local association of species richness and people is in many cases a negative one (Pautasso, 2007; Pecher et al., 2010). This biogeographical pattern is thus important for conservation. If species-rich regions are also densely populated, preserving biodiversity becomes more difficult, ceteris paribus, than if species-rich regions were sparsely populated. At the same time, positive, regional species–people correlations are an opportunity for the biodiversity education of the majority of the human population and underline the importance of conservation in human-modified landscapes (e.g. Sheil & Meijaard, 2010; Ward, 2010).
Resumo:
A shift in the entrepreneurial landscape is taking place brought about by grassroots innovators with little formal education and technological knowhow, living and working in penurious environments. This research represents an emerging third wave of literature on Bottom of the Pyramid innovation, where products are offered for and by the underserved. Using primary and secondary data derived from four cases of grassroots entrepreneurs in the Indian Subcontinent, the study explores the phenomenon where resource scarce entrepreneurs craft solutions that are environmental friendly, with low overall ownership costs, and use locally available material. We argue that the grassroots phenomenon can be fruitfully exploited to achieve the new Sustainable Development Goals proposed by the UN as a post-2015 strategy for the future of global governance. These innovations might have a tremendous impact not only in terms of serving unmet and ignored consumer needs, but also longer term impacts through enhanced productivity, sustainability, poverty reduction and inclusion promotion.
Resumo:
The purpose of this research was to analyze whether the use of technological resources may be feasible in the implementation of the environmental culture cross-cutting factor for sustainable development, which focuses on environmental issues related to the contents of the Science study program for the seventh year of the basic general education. The research design is qualitative with a dominant approach and uses some quantitative elements specifically in the design of instruments and some data analysis techniques. The type of study was developed with a multi-method approach; a trend that has been shaping a research style which integrates various methods in a single design. For this, we identified the didactic strategies and their relationship to both, technology and the environmental axis for sustainable development, used by six Science teachers of the 7th grade, in public institutions of the province of Heredia, Central Valley, Costa Rica, as well as the opinion of 20 students from that same grade. The main results include the opinions of the students, who showed a considerable interest in classes where technological resources are used. However, teachers do not show great interest or positive opinions on this matter; in addition, they are not well trained on the use of technological resources. It was also identified that the teaching personal who participated in the study do not develop this curricular axis.
Resumo:
Following the approval of the 2030 Agenda for Sustainable Development in 2015, sustainability became a hotly debated topic. In order to build a better and more sustainable future by 2030, this agenda addressed several global issues, including inequality, climate change, peace, and justice, in the form of 17 Sustainable Development Goals (SDGs), that should be understood and pursued by nations, corporations, institutions, and individuals. In this thesis, we researched how to exploit and integrate Human-Computer Interaction (HCI) and Data Visualization to promote knowledge and awareness about SDG 8, which wants to encourage lasting, inclusive, and sustainable economic growth, full and productive employment, and decent work for all. In particular, we focused on three targets: green economy, sustainable tourism, employment, decent work for all, and social protection. The primary goal of this research is to determine whether HCI approaches may be used to create and validate interactive data visualization that can serve as helpful decision-making aids for specific groups and raise their knowledge of public-interest issues. To accomplish this goal, we analyzed four case studies. In the first two, we wanted to promote knowledge and awareness about green economy issues: we investigated the Human-Building Interaction inside a Smart Campus and the dematerialization process inside a University. In the third, we focused on smart tourism, investigating the relationship between locals and tourists to create meaningful connections and promote more sustainable tourism. In the fourth, we explored the industry context to highlight sustainability policies inside well-known companies. This research focuses on the hypothesis that interactive data visualization tools can make communities aware of sustainability aspects related to SDG8 and its targets. The research questions addressed are two: "how to promote awareness about SDG8 and its targets through interactive data visualizations?" and "to what extent are these interactive data visualizations effective?".
Resumo:
This study focuses on the integration of eco-innovation principles into strategy and policy at the regional level. The importance of regions as a level for integrating eco-innovative programs and activities served as the point of interest for this study. Eco-innovative activities and technologies are seen as means to meet sustainable development objective of improving regions’ quality of life. This study is conducted to get an in-depth understanding and learning about eco-innovation at regional level, and to know the basic concepts that are important in integrating eco-innovation principles into regional policy. Other specific objectives of this study are to know how eco-innovation are developed and practiced in the regions of the EU, and to analyze the main characteristic features of an eco-innovation model that is specifically developed at Päijät-Häme Region in Finland. Paijät-Häme Region is noted for its successful eco-innovation strategies and programs, hence, taken as casework in this study. Both primary (interviews) and secondary data (publicly available documents) are utilized in this study. The study shows that eco-innovation plays an important role in regional strategy as reviewed based on the experience of other regions in the EU. This is because of its localized nature which makes it easier to facilitate in a regional setting. Since regional authorities and policy-makers are normally focused on solving its localized environmental problems, eco-innovation principles can easily be integrated into regional strategy. The case study highlights Päijät-Häme Region’s eco-innovation strategies and projects which are characterized by strong connection of knowledge-producing institutions. Policy instruments supporting eco-innovation (e.g. environmental technologies) are very much focused on clean technologies, hence, justifying the formation of cleantech clusters and business parks in Päijät-Häme Region. A newly conceptualized SAMPO model of eco-innovation has been developed in Päijät-Häme Region to better capture the region’s characteristics and to eventually replace the current model employed by the Päijät-Häme Regional Authority. The SAMPO model is still under construction, however, review of its principles points to some of its three important spearheads – practice-based innovation, design (eco-design) and clean technology or environmental technology (environment).
Resumo:
In diesem Beitrag werden die Besonderheiten des BLK-Projektes OLIM1 in Bezug auf die Implementierung von Nachhaltigkeit und die Entwicklungsimpulse aus der Weiterbildung in die Hochschulen hinein dargestellt. Ausgehend von der besonderen Situation in Hamburg und in der Arbeitsstelle für wissenschaftliche Weiterbildung der Universität Hamburg wird das Projekt in seinen wesentlichen Zügen skizziert. Es schließt sich eine Darstellung wichtiger Faktoren zum angestrebten Ziel Nachhaltigkeit sowie eine Beschreibung ihres konzeptionellen Beitrags an. Am Beispiel erster Projektergebnisse wird aufgezeigt, inwiefern sich die hohen Erwartungen bisher erfüllt haben oder ob es sich um einen Anflug von Größenwahn einer kleinen Einrichtung in einer großen Universität handelt. (DIPF/Orig.)
Resumo:
La investigación busca determinar el propósito que persiguen los pequeños Estados insulares en desarrollo del Pacífico al adoptar una trayectoria de desarrollo sostenible. Se plantea que la adopción de una trayectoria de desarrollo sostenible es la estrategia por medio de la cual estos Estados buscan hacer frente a su condición de vulnerabilidad; lo cual logran a través del uso de la diplomacia en distintos escenarios multilaterales, con el fin de modificar tanto sus prácticas como las de otros actores.
Resumo:
ABSTRACT Before the mid 1980s the World Bank conceived "nature" as something to be "conquered" and "environment" as a source of resources for "development". By the late 1980s the Bank incorporated norms of environmental sustainability and indigenous peoples' protection into its mandate, and other development-oriented IOs followed. This two-part paper describes how a fight over the Polonoroeste road project in the Brazilian Amazon - inside the Bank, between the Bank and NGOs supported by the US Congress, and between the Bank and the government of Brazil -helped to generate the far-reaching change of policy norms. The first part describes how the project was designed as an innovation in sustainable development in rainforests; and how it provoked a firestorm inside the Bank as it moved towards project approval.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
The United Kingdom is committed to a raft of requirements to create a low-carbon economy. Buildings consume approximately 40% of UK energy demand. Any improvement on the energy performance of buildings therefore can significantly contribute to the delivery of a low-carbon economy. The challenge for the construction sector and its clients is how to meet the policy requirements to deliver low and zero carbon (LZC) buildings, which spans broader than the individual building level, to requirements at the local and regional levels, and wider sustainability pressures. Further, the construction sector is reporting skills shortages coupled with the need for ‘new skills’ for the delivery of LZC buildings. The aim of this paper is to identify, and better understand, the skills required by the construction sector and its clients for the delivery of LZC buildings within a region. The theoretical framing for this research is regional innovation system (RIS) using a socio-technical network analysis (STNA) methodology. A case study of a local authority region is presented. Data is drawn from a review of relevant local authority documentation, observations and semi-structured interviews from one (project 1) of five school retrofit projects within the region. The initial findings highlight the complexity surrounding the form and operation of the LZC network for project 1. The skills required by the construction sector and its clients are connected to different actor roles surrounding the delivery of the project. The key actors involved and their required skills are: project management and energy management skills required by local authority; project management skills (in particular project planning), communication and research skills required by school end-users; and a ‘technical skill’ relating to knowledge of a particular energy efficient measure (EEM) and use of equipment to implement the EEM is required by the EEM contractors.
Resumo:
Infrastructure concession is an alternative widely used by governments to increase investment. In the case of the road sector, the main characteristics of the concessions are: long-term projects, high investments in the early years of the contract and high risks. A viability analysis must be carried out for each concession and consider the characteristics of the project. When the infrastructure is located in a developing country, political and market growth uncertainties should be add in the concession project analysis, as well as economic instability, because they present greater risks. This paper is an analysis of state bank participation in road infrastructure finance in developing countries. For this purpose, we studied road infrastructure financing and its associated risks, and also the features of developing countries. Furthermore, we considered the issue of state banks and multilateral development banks that perform an important role by offering better credit lines than the private banks, in terms of cost, interest and grace period. Based on this study, we analyzed the Brazilian Development Bank - BNDES – and their credit supply to road infrastructure concessions. The results show that BNDES is the main financing agent for long-term investment in the sector, offering loans with low interest rates in Brazilian currency. From this research we argue that a single state bank should not alone support the increasing demand for finance in Brazil. Therefore, we conclude that there is a need to expand the supply of credit in Brazil, by strengthening private banks in the long-term lending market.
Resumo:
The recognition of the relevance of energy, especially of the renewable energies generated by the sun, water, wind, tides, modern biomass or thermal is growing significantly in the global society based on the possibility it has to improve societies′ quality of life, to support poverty reduction and sustainable development. Renewable energy, and mainly the energy generated by large hydropower generation projects that supply most of the renewable energy consumed by developing countries, requires many technical, legal, financial and social complex processes sustained by innovations and valuable knowledge. Besides these efforts, renewable energy requires a solid infrastructure to generate and distribute the energy resources needed to solve the basic needs of society. This demands a proper construction performance to deliver the energy projects planned according to specifications and respecting environmental and social concerns, which implies the observance of sustainable construction guidelines. But construction projects are complex and demanding and frequently face time and cost overruns that may cause negative impacts on the initial planning and thus on society. The renewable energy issue and the large renewable energy power generation and distribution projects are particularly significant for developing countries and for Latin America in particular, as this region concentrates an important hydropower potential and installed capacity. Using as references the performance of Venezuelan large hydropower generation projects and the Guri dam construction, this research evaluates the tight relationship existing between sustainable construction and knowledge management and their impact to achieve sustainability goals. The knowledge management processes are proposed as a basic strategy to allow learning from successes and failures obtained in previous projects and transform the enhancement opportunites into actions to improve the performance of the renewable energy power generation and distribution projects.
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável