914 resultados para Suspension cell culture
Resumo:
Long-chain n-3 polyunsaturated fatty acids are found in oily fish and in fish oils and similar preparations. Substantial evidence from epidemiological and case-control studies indicates that consumption of fish, oily fish and long-chain n-3 fatty acids reduces risk of cardiovascular mortality. Secondary prevention studies using long-chain n-3 fatty acids in patients post-myocardial infarction have shown a reduction in total and cardiovascular mortality with an especially potent effect on sudden death. Long-chain n-3 fatty acids have been shown to beneficially modify a range of cardiovascular risk factors, which may result in primary cardiovascular prevention. However, reduced non-fatal and fatal events and a reduction in sudden death probably involve other mechanisms. Reduced thrombosis following long-chain n-3 fatty acids may play a role. A decrease in arrhythmias is a favoured mechanism of action of long-chain n-3 fatty acids and is supported by cell culture and animal studies. However human trials using implantable cardiac defibrillators have produced inconsistent findings and a recent meta-analysis does not support this mechanism of action. An alternative mechanism of action may be stabilisation of atherosclerotic plaques by long-chain n-3 fatty acids. This is suggested by one published human study which showed that incorporation of long-chain n-3 fatty acids into plaques collected at carotid endarterectomy resulted in fewer macrophages in the plaque and a morphology indicative of increased stability. These findings are supported from observations in an animal model and suggest that the primary effect of long-chain n-3 fatty acids might be on macrophages within the plaque.
Resumo:
As the most commercially valuable cereal grown worldwide and the best-characterized in genetic terms, maize was predictably the first target for transformation among the important crops. Indeed, the first attempt at transformation of any plant was conducted on maize (1). These early efforts, however, were inevitably unsuccessful, since at that time, there were no reliable methods to permit the introduction of DNA into a cell, the expression of that DNA, and the identification of progeny derived from such a “transgenic” cell (2). Almost 20 years later, these technologies were finally combined, and the first transgenic cereals were produced. In the last few years, methods have become increasingly efficient, and transgenic maize has now been produced from protoplasts as well as from Agrobacterium-medieited or “Biolistic” delivery to embryogenic tissue (for a general comparison of methods used for maize, the reader is referred to a recent review—ref. 3). The present chapter will describe probably the simplest of the available procedures, namely the delivery of DNA to the recipient cells by vortexing them in the presence of silicon carbide (SiC) whiskers (this name will be used in preference to the term “fiber,” since it more correctly describes the single crystal nature of the material).
Resumo:
The recent emergence of novel pathogenic human and animal coronaviruses has highlighted the need for antiviral therapies that are effective against a spectrum of these viruses. We have used several strains of murine hepatitis virus (MHV) in cell culture and in vivo in mouse models to investigate the antiviral characteristics of peptide-conjugated antisense phosphorodiamidate morpholino oligomers (P-PMOs). Ten P-PMOs directed against various target sites in the viral genome were tested in cell culture, and one of these (5TERM), which was complementary to the 5' terminus of the genomic RNA, was effective against six strains of MHV. Further studies were carried out with various arginine-rich peptides conjugated to the 5TERM PMO sequence in order to evaluate efficacy and toxicity and thereby select candidates for in vivo testing. In uninfected mice, prolonged P-PMO treatment did not result in weight loss or detectable histopathologic changes. 5TERM P-PMO treatment reduced viral titers in target organs and protected mice against virus-induced tissue damage. Prophylactic 5TERM P-PMO treatment decreased the amount of weight loss associated with infection under most experimental conditions. Treatment also prolonged survival in two lethal challenge models. In some cases of high-dose viral inoculation followed by delayed treatment, 5TERM P-PMO treatment was not protective and increased morbidity in the treated group, suggesting that P-PMO may cause toxic effects in diseased mice that were not apparent in the uninfected animals. However, the strong antiviral effect observed suggests that with further development, P-PMO may provide an effective therapeutic approach against a broad range of coronavirus infections.
Resumo:
Stable isotope labeling combined with MS is a powerful method for measuring relative protein abundances, for instance, by differential metabolic labeling of some or all amino acids with 14N and 15N in cell culture or hydroponic media. These and most other types of quantitative proteomics experiments using high-throughput technologies, such as LC-MS/MS, generate large amounts of raw MS data. This data needs to be processed efficiently and automatically, from the mass spectrometer to statistically evaluated protein identifications and abundance ratios. This paper describes in detail an approach to the automated analysis of uniformly 14N/15N-labeled proteins using MASCOT peptide identification in conjunction with the trans-proteomic pipeline (TPP) and a few scripts to integrate the analysis workflow. Two large proteomic datasets from uniformly labeled Arabidopsis thaliana were used to illustrate the analysis pipeline. The pipeline can be fully automated and uses only common or freely available software.
Resumo:
Cell culture models of antioestrogen resistance often involve applying selective pressures of oestrogen deprivation simultaneously with addition of tamoxifen or fulvestrant (Faslodex, ICI 182,780) which makes it difficult to distinguish events in development of antioestrogen resistance from those in loss of response to oestrogen or other components. We describe here time courses of loss of antioestrogen response using either oestrogen-maintained or oestrogen-deprived MCF7 cells in which the only alteration to the culture medium was addition of 10(-6) M tamoxifen or 10(-7) M fulvestrant. In both oestrogen-maintained and oestrogen-deprived models, loss of growth response to tamoxifen was not associated with loss of response to fulvestrant. However, loss of growth response to fulvestrant was associated in both models with concomitant loss of growth response to tamoxifen. Measurement of oestrogen receptor alpha (ER alpha) and oestrogen receptor beta (ER beta) mRNA by real-time RT-PCR together with ER alpha and ER beta protein by Western immunoblotting revealed substantial changes to ER alpha levels but very little alteration to ER beta levels following development of antioestrogen resistance. In oestrogen-maintained cells, tamoxifen resistance was associated with raised levels of ERa mRNA/protein. However by contrast, in oestrogen-deprived MCF7 cells, where oestrogen deprivation alone had already resulted in increased levels of ERa mRNA/protein, long-term tamoxifen exposure now reduced ER alpha levels. Whilst long-term exposure to fulvestrant reduced ERa. mRNA/protein levels in the oestrogen-maintained cells to a level barely detectable by Western immunoblotting and non-functional in inducing gene expression (ERE-LUC reporter or pS2), in oestrogen-deprived cells the reduction was much less substantial and these cells retained an oestrogen-induction of both the ERE-LUC reporter gene and the endogenous pS2 gene which could still be inhibited by antioestrogen. This demonstrates that whilst ER alpha can be abrogated by fulvestrant and increased by tamoxifen in some circumstances, this does not always hold true and mechanisms other than alteration to ER must be involved in the development of antioestrogen resistant growth. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.
Resumo:
Stable isotope labeling combined with MS is a powerful method for measuring relative protein abundances, for instance, by differential metabolic labeling of some or all amino acids with N-14 and N-15 in cell culture or hydroponic media. These and most other types of quantitative proteomics experiments using high-throughput technologies, such as LC-MS/MS, generate large amounts of raw MS data. This data needs to be processed efficiently and automatically, from the mass spectrometer to statistically evaluated protein identifications and abundance ratios. This paper describes in detail an approach to the automated analysis of Uniformly N-14/N-15-labeled proteins using MASCOT peptide identification in conjunction with the trans-proteomic pipeline (TPP) and a few scripts to integrate the analysis workflow. Two large proteomic datasets from uniformly labeled Arabidopsis thaliana were used to illustrate the analysis pipeline. The pipeline can be fully automated and uses only common or freely available software.
Resumo:
The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.
Resumo:
A wide range of cell culture, animal and human epidemiological studies are suggestive of a role of vitamin E (VE) in brain function and in the prevention of neurodegeneration. However, the underlying molecular mechanisms remain largely unknown. In the current investigation Affymetrix gene chip technology was utilised to establish the impact of chronic VE deficiency on hippocampal genes expression. Male albino rats were fed either a VE deficient or standard diet (60 mg/kg feed) for a period of 9 months. Rats were sacrificed, the hippocampus removed and genes expression established in individual animals. VE deficiency showed to have a strong impact on genes expression in the hippocampus. An important number of genes found to be regulated by VE was associated with hormones and hormone metabolism, nerve growth factor, apoptosis, dopaminergic neurotransmission, and clearance of amyloid-beta and advanced glycated endproducts. In particular, VE strongly affected the expression of an array of genes encoding for proteins directly or indirectly involved in the clearance of amyloid beta, changes which are consistent with a protective effect of VE on Alzheimer's disease progression.
Resumo:
Dietary antioxidants can affect cellular processes relevant to chronic inflammatory diseases such as atherosclerosis. We have used non- standard techniques to quantify effects of the antioxidant soy isoflavones genistein and daidzein on translocation of Nuclear Factor-KB (NF-KB) and nitric oxide (NO) production, which are important in these diseases. Translocation was quantified using confocal immunofluoresecence microscopy and ratiometric image analysis. NO was quantified by an electrochemical method after reduction of its oxidation products in cell culture supernatants. Activation of the RAW 264.7 murine monocyte/macrophage cell line increased the ratio of nuclear to cytoplasmic immunostaining for NF-kB. The increase was exacerbated by pre-treatment with genistein or daidzein. To show that decreases could also be detected, pre-treatment with the pine bark extract Pycnogenol (R) r was examined, and found to reduce translocation. NO production was also increased by activation, but was reduced by pre-treatment with genistein or daidzein. In the EA. hy926 human endothelial cell line, constitutive production was detectable and was increased by thrombin. The confocal and electrochemical methods gave data that agreed with results obtained using the established electromobility shift and Griess assays, but were more sensitive, more convenient, gave more detailed information and avoided the use of radioisotopes.
Resumo:
Dietary isoflavones are currently receiving much attention because of their potential role in preventing coronary artery disease and other chronic diseases. Accumulating evidence from cell culture and laboratory animal experiments indicates that isoflavones have the potential to prevent or delay atherogenesis. Suggested mechanisms of action include: a reduction in low-density lipoprotein (LDL) cholesterol and a potential reduction in the susceptibility of the LDL particle to oxidation; (2) an improvement in vascular reactivity; (3) an inhibition of pro-inflammatory cytokines, cell adhesion proteins and nitric oxide (NO) production; and (4) an inhibition of platelet aggregation. These mechanisms are consistent with the epidemiological evidence that a high consumption of isoflavone-rich soy products is associated with a reduced incidence of coronary artery disease. Biological effects of isoflavones are dependent on many factors, including dose consumed, duration of use, protein-binding affinity, and an individual's metabolism or intrinsic oestrogenic state. Further clinical studies are necessary to determine the potential health effects of isoflavones in specific population groups as we currently know little about age-related differences in exposure to these compounds and there are few guidelines on optimal dose for cardiovascular health benefits.
Resumo:
Quantitative analysis by mass spectrometry (MS) is a major challenge in proteomics as the correlation between analyte concentration and signal intensity is often poor due to varying ionisation efficiencies in the presence of molecular competitors. However, relative quantitation methods that utilise differential stable isotope labelling and mass spectrometric detection are available. Many drawbacks inherent to chemical labelling methods (ICAT, iTRAQ) can be overcome by metabolic labelling with amino acids containing stable isotopes (e.g. 13C and/or 15N) in methods such as Stable Isotope Labelling with Amino acids in Cell culture (SILAC). SILAC has also been used for labelling of proteins in plant cell cultures (1) but is not suitable for whole plant labelling. Plants are usually autotrophic (fixing carbon from atmospheric CO2) and, thus, labelling with carbon isotopes becomes impractical. In addition, SILAC is expensive. Recently, Arabidopsis cell cultures were labelled with 15N in a medium containing nitrate as sole nitrogen source. This was shown to be suitable for quantifying proteins and nitrogen-containing metabolites from this cell culture (2,3). Labelling whole plants, however, offers the advantage of studying quantitatively the response to stimulation or disease of a whole multicellular organism or multi-organism systems at the molecular level. Furthermore, plant metabolism enables the use of inexpensive labelling media without introducing additional stress to the organism. And finally, hydroponics is ideal to undertake metabolic labelling under extremely well-controlled conditions. We demonstrate the suitability of metabolic 15N hydroponic isotope labelling of entire plants (HILEP) for relative quantitative proteomic analysis by mass spectrometry. To evaluate this methodology, Arabidopsis plants were grown hydroponically in 14N and 15N media and subjected to oxidative stress.
Resumo:
The self-assembly of tripeptides based on the RGD cell adhesion motif is investigated. Two tripeptides containing the Fmoc [N-(fluorenyl)-9-methoxycarbonyl] aromatic unit were synthesized, Fmoc-RGD and a control peptide containing a scrambled sequence, Fmoc-GRD. The Fmoc is used to control selfassembly via aromatic stacking interactions. The self-assembly and hydrogelation properties of the two Fmoc-tripeptides are compared. Both form well defined amyloid fibrils (as shown by cryo-TEM and SAXS) with b-sheet features in their circular dichroism and FTIR spectra. Both peptides form selfsupporting hydrogels, the dynamic shear modulus of which was measured. Preliminary cell culture experiments reveal that Fmoc-RGD can be used as a support for bovine fibroblasts, but not Fmoc- GRD, consistent with the incorporation of the cell adhesion motif in the former peptide.
Resumo:
Metabolic stable isotope labeling is increasingly employed for accurate protein (and metabolite) quantitation using mass spectrometry (MS). It provides sample-specific isotopologues that can be used to facilitate comparative analysis of two or more samples. Stable Isotope Labeling by Amino acids in Cell culture (SILAC) has been used for almost a decade in proteomic research and analytical software solutions have been established that provide an easy and integrated workflow for elucidating sample abundance ratios for most MS data formats. While SILAC is a discrete labeling method using specific amino acids, global metabolic stable isotope labeling using isotopes such as (15)N labels the entire element content of the sample, i.e. for (15)N the entire peptide backbone in addition to all nitrogen-containing side chains. Although global metabolic labeling can deliver advantages with regard to isotope incorporation and costs, the requirements for data analysis are more demanding because, for instance for polypeptides, the mass difference introduced by the label depends on the amino acid composition. Consequently, there has been less progress on the automation of the data processing and mining steps for this type of protein quantitation. Here, we present a new integrated software solution for the quantitative analysis of protein expression in differential samples and show the benefits of high-resolution MS data in quantitative proteomic analyses.
Resumo:
Aims: Therapeutic limbal epithelial stem cells could be managed more efficiently if clinically validated batches were transported for ‘on-demand’ use. Materials & methods: In this study, corneal epithelial cell viability in calcium alginate hydrogels was examined under cell culture, ambient and chilled conditions for up to 7 days. Results: Cell viability improved as gel internal pore size increased, and was further enhanced with modification of the gel from a mass to a thin disc. Ambient storage conditions were optimal for supporting cell viability in gel discs. Cell viability in gel discs was significantly enhanced with increases in pore size mediated by hydroxyethyl cellulose. Conclusion: Our novel methodology of controlling alginate gel shape and pore size together provides a more practical and economical alternative to established corneal tissue/cell storage methods.