905 resultados para Surgery, computed tomography excretory
Resumo:
A 70-year-old woman presented to the emergency department with symptoms of a lower respiratory infection. A chest x-ray showed enlargement of the mediastinal space. The patient was admitted with a respiratory tract infection and started on antibiotic treatment. A computed tomography (CT) scan of the thorax revealed a large diaphragmatic hernia with stomach, large intestine and caudal pancreas lodged in the thoracic cavity. After the antibiotic treatment, the patient became asymptomatic and surgery repair was declined. Morgagni hernia is an uncommon type of congenital diaphragmatic hernia, which may be asymptomatic until late in life or may be present acutely with life threatening conditions.
Resumo:
This review will make familiar with new concepts in ovarian cancer and their impact on radiological practice. Disseminated peritoneal spread and ascites are typical of the most common (70–80 %) cancer type, highgrade serous ovarian cancer. Other cancer subtypes differ in origin, precursors, and imaging features. Expert sonography allows excellent risk assessment in adnexal masses. Owing to its high specificity, complementary MRI improves characterization of indeterminate lesions. Major changes in the new FIGO staging classification include fusion of fallopian tube and primary ovarian cancer and the subcategory stage IIIA1 for retroperitoneal lymph node metastases only. Inguinal lymph nodes, cardiophrenic lymph nodes, and umbilical metastases are classified as distant metastases (stage IVB). In multidisciplinary conferences (MDC), CT has been used to predict the success of cytoreductive surgery. Resectability criteria have to be specified and agreed on in MDC. Limitations in detection of metastases may be overcome using advanced MRI techniques.
Resumo:
O carcinoma do colo do útero é um dos tumores malignos mais frequentes a nível mundial. Para garantir a uniformização de critérios entre países com diferentes recursos, o estadiamento deste tumor permanece clínico, segundo as orientações da Federação Internacional de Ginecologia e Obstetrícia, e tem por principal objectivo a identificação das doentes que são candidatas à cirurgia. A avaliação radiológica é amplamente recomendada, quando disponível, com o objectivo de aumentar a acuidade do diagnóstico, assegurando a optimização terapêutica, sendo também recomendada no seguimento. Importa, assim, que o radiologista tenha presente não só o protocolo técnico adequado na suspeita de carcinoma do colo do útero e o respectivo espectro de apresentação radiológica, mas também algumas características da própria doença e possíveis abordagens terapêuticas, de forma a incluir no seu relatório toda a informação relevante. A ressonância magnética permanece o principal pilar na avaliação radiológica destas doentes, embora recentemente o papel da tomografia computorizada por emissão de positrões tenha vindo a ganhar relevo, sobretudo no que respeita à avaliação ganglionar e ao despiste de recidiva. Neste artigo as autoras dão uma perspectiva aprofundada da avaliação radiológica do carcinoma do colo do útero, deste o diagnóstico ao seguimento pós-terapêutico, à luz dos estudos mais recentes.
Resumo:
O carcinoma do ovário é na maioria das vezes diagnosticado num estádio avançado. Nos últimos anos a quimioterapia neoadjuvante tem emergido como uma terapêutica alternativa para os casos de doença avançada em que não é possível uma adequada remoção cirúrgica dos implantes tumorais, sendo a cirurgia cito-redutora adiada para uma segunda fase. A Radiologia tem vindo a assumir um papel importante na selecção destas doentes, com definição de critérios de irressecabilidade avaliados por Tomografia Computorizada e que se relacionam sobretudo com a localização e dimensão dos implantes.
Resumo:
International audience
Resumo:
Purpose: Custom cranio-orbital implants have been shown to achieve better performance than their hand-shaped counterparts by restoring skull anatomy more accurately and by reducing surgery time. Designing a custom implant involves reconstructing a model of the patient's skull using their computed tomography (CT) scan. The healthy side of the skull model, contralateral to the damaged region, can then be used to design an implant plan. Designing implants for areas of thin bone, such as the orbits, is challenging due to poor CT resolution of bone structures. This makes preoperative design time-intensive since thin bone structures in CT data must be manually segmented. The objective of this thesis was to research methods to accurately and efficiently design cranio-orbital implant plans, with a focus on the orbits, and to develop software that integrates these methods. Methods: The software consists of modules that use image and surface restoration approaches to enhance both the quality of CT data and the reconstructed model. It enables users to input CT data, and use tools to output a skull model with restored anatomy. The skull model can then be used to design the implant plan. The software was designed using 3D Slicer, an open-source medical visualization platform. It was tested on CT data from thirteen patients. Results: The average time it took to create a skull model with restored anatomy using our software was 0.33 hours ± 0.04 STD. In comparison, the design time of the manual segmentation method took between 3 and 6 hours. To assess the structural accuracy of the reconstructed models, CT data from the thirteen patients was used to compare the models created using our software with those using the manual method. When registering the skull models together, the difference between each set of skulls was found to be 0.4 mm ± 0.16 STD. Conclusions: We have developed a software to design custom cranio-orbital implant plans, with a focus on thin bone structures. The method described decreases design time, and is of similar accuracy to the manual method.
Resumo:
Paciente masculino de 91 años con antecedente de hipertensión arterial en manejo farmacológico; que ingresa con cuadro de 3 meses de deposiciones diarreicas con episodios de hematoquecia ocasional, asociado a dolor abdominal difuso intermitente.
Resumo:
El impacto que ha generado el trauma en Colombia a lo largo de la historia, nos ha obligado a mejorar y adaptar diferentes tipos de sistemas de atención en trauma, basados en los lineamientos internacionales, los cuales buscan evitar el significativo aumento en las tasas de mortalidad y discapacidad que se obtienen de este, especialmente en los servicios de Emergencias en los cuales se reciben el 100% de estos pacientes con traumatismo múltiple o politraumatismo. Dentro de este grupo de pacientes hay un subgrupo que son las pacientes con trauma de abdomen que cursan con estabilidad hemodinámica y además son clasificados de bajo riesgo, ya sea por índices de trauma o por otros métodos como la medición sérica de lactato, los cuales tienen un papel poco despreciable al momento de ver mortalidad y discapacidad por trauma, ya sea penetrante o cerrado; en este trabajo específicamente nos centramos en las personas que consultan al servicio de Emergencias con trauma cerrado de abdomen los cuales son considerados de bajo riesgo, siendo este subgrupo de pacientes uno de los más difíciles de abordar y enfocar al momento de la valoración inicial, ya que se debe tener la seguridad de que no hay lesiones que comprometen la vida y por consiguiente estos pacientes puedan ser dados de alta.
Resumo:
Introducción: El cáncer gástrico es uno de los más frecuentes a nivel mundial y Colombia se sitúa entre los países de mayor incidencia en este tipo de patología. Objetivo: Describir las características epidemiológicas, clínicas, el tratamiento administrado y los desenlaces inmediatos de los pacientes con diagnóstico de cáncer gástrico atendidos en el Hospital Universitario Mayor de Bogotá entre los años 2011 y 2014. Metodología: Se realizó un estudio observacional descriptivo con diagnóstico de cáncer gástrico. Se realizaron análisis univariados por medio de proporciones para las variables cualitativas y medidas de tendencia central para las variables cuantitativas según la distribución. Resultados: Un total de 189 pacientes fueron analizados. El dolor fue el síntoma más frecuente en los pacientes (30.7%) y el principal signo encontrado fue una masa palpable en abdomen (9,5%). Los pacientes fueron sometidos a diferentes abordajes terapéuticos, la mayoría recibieron manejo paliativo no quirúrgico (52.9%) y la opción quirúrgica más usada en los pacientes fue la gastrectomía total (20.6%), y la subtotal (16,4) seguidas de quimioterapia y/o radiación perioperatoria. Los pacientes que sobrevivieron a los 2 años fueron 7,4% del total. Conclusiones: El registro de los pacientes con cáncer gástrico es bueno en el Méderi-Hospital Universitario Mayor es bueno y permite caracterizar los pacientes, la presentación de la patología y los resultados del tratamiento que concuerdan con los presentados en contextos similares en la literatura.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) is the most common deformity of the spine, affecting 2-4% of the population. Previous studies have shown that the vertebrae in scoliotic spines undergo abnormal shape changes, however there has been little exploration of how scoliosis affects bone density distribution within the vertebrae. In this study, existing CT scans of 53 female idiopathic scoliosis patients with right-sided main thoracic curves were used to measure the lateral (right to left) bone density profile at mid-height through each vertebral body. Five key bone density profile measures were identified from each normalised bone density distribution, and multiple regression analysis was performed to explore the relationship between bone density distribution and patient demographics (age, height, weight, body mass index (BMI), skeletal maturity, time since Menarche, vertebral level, and scoliosis curve severity). Results showed a marked convex/concave asymmetry in bone density for vertebral levels at or near the apex of the scoliotic curve. At the apical vertebra, mean bone density at the left side (concave) cortical shell was 23.5% higher than for the right (convex) cortical shell, and cancellous bone density along the central 60% of the lateral path from convex to concave increased by 13.8%. The centre of mass of the bone density profile at the thoracic curve apex was located 53.8% of the distance along the lateral path, indicating a shift of nearly 4% toward the concavity of the deformity. These lateral bone density gradients tapered off when moving away from the apical vertebra. Multi-linear regressions showed that the right cortical shell peak bone density is significantly correlated with skeletal maturity, with each Risser increment corresponding to an increase in mineral equivalent bone density of 4-5%. There were also statistically significant relationships between patient height, weight and BMI, and the gradient of cancellous bone density along the central 60% of the lateral path. Bone density gradient is positively correlated with weight, and negatively correlated with height and BMI, such that at the apical vertebra, a unit decrease in BMI corresponds to an almost 100% increase in bone density gradient.
Resumo:
Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved
Resumo:
The validation of Computed Tomography (CT) based 3D models takes an integral part in studies involving 3D models of bones. This is of particular importance when such models are used for Finite Element studies. The validation of 3D models typically involves the generation of a reference model representing the bones outer surface. Several different devices have been utilised for digitising a bone’s outer surface such as mechanical 3D digitising arms, mechanical 3D contact scanners, electro-magnetic tracking devices and 3D laser scanners. However, none of these devices is capable of digitising a bone’s internal surfaces, such as the medullary canal of a long bone. Therefore, this study investigated the use of a 3D contact scanner, in conjunction with a microCT scanner, for generating a reference standard for validating the internal and external surfaces of a CT based 3D model of an ovine femur. One fresh ovine limb was scanned using a clinical CT scanner (Phillips, Brilliance 64) with a pixel size of 0.4 mm2 and slice spacing of 0.5 mm. Then the limb was dissected to obtain the soft tissue free bone while care was taken to protect the bone’s surface. A desktop mechanical 3D contact scanner (Roland DG Corporation, MDX 20, Japan) was used to digitise the surface of the denuded bone. The scanner was used with the resolution of 0.3 × 0.3 × 0.025 mm. The digitised surfaces were reconstructed into a 3D model using reverse engineering techniques in Rapidform (Inus Technology, Korea). After digitisation, the distal and proximal parts of the bone were removed such that the shaft could be scanned with a microCT (µCT40, Scanco Medical, Switzerland) scanner. The shaft, with the bone marrow removed, was immersed in water and scanned with a voxel size of 0.03 mm3. The bone contours were extracted from the image data utilising the Canny edge filter in Matlab (The Mathswork).. The extracted bone contours were reconstructed into 3D models using Amira 5.1 (Visage Imaging, Germany). The 3D models of the bone’s outer surface reconstructed from CT and microCT data were compared against the 3D model generated using the contact scanner. The 3D model of the inner canal reconstructed from the microCT data was compared against the 3D models reconstructed from the clinical CT scanner data. The disparity between the surface geometries of two models was calculated in Rapidform and recorded as average distance with standard deviation. The comparison of the 3D model of the whole bone generated from the clinical CT data with the reference model generated a mean error of 0.19±0.16 mm while the shaft was more accurate(0.08±0.06 mm) than the proximal (0.26±0.18 mm) and distal (0.22±0.16 mm) parts. The comparison between the outer 3D model generated from the microCT data and the contact scanner model generated a mean error of 0.10±0.03 mm indicating that the microCT generated models are sufficiently accurate for validation of 3D models generated from other methods. The comparison of the inner models generated from microCT data with that of clinical CT data generated an error of 0.09±0.07 mm Utilising a mechanical contact scanner in conjunction with a microCT scanner enabled to validate the outer surface of a CT based 3D model of an ovine femur as well as the surface of the model’s medullary canal.
Resumo:
Insufficient availability of osteogenic cells limits bone regeneration through cell-based therapies. This study investigated the potential of amniotic fluid–derived stem (AFS) cells to synthesize mineralized extracellular matrix within porous medical-grade poly-e-caprolactone (mPCL) scaffolds. The AFS cells were initially differentiated in two-dimensional (2D) culture to determine appropriate osteogenic culture conditions and verify physiologic mineral production by the AFS cells. The AFS cells were then cultured on 3D mPCL scaffolds (6-mm diameter9-mm height) and analyzed for their ability to differentiate to osteoblastic cells in this environment. The amount and distribution of mineralized matrix production was quantified throughout the mPCL scaffold using nondestructive micro computed tomography (microCT) analysis and confirmed through biochemical assays. Sterile microCT scanning provided longitudinal analysis of long-term cultured mPCL constructs to determine the rate and distribution of mineral matrix within the scaffolds. The AFS cells deposited mineralized matrix throughout the mPCL scaffolds and remained viable after 15 weeks of 3D culture. The effect of predifferentiation of the AFS cells on the subsequent bone formation in vivo was determined in a rat subcutaneous model. Cells that were pre-differentiated for 28 days in vitro produced seven times more mineralized matrix when implanted subcutaneously in vivo. This study demonstrated the potential of AFS cells to produce 3D mineralized bioengineered constructs in vitro and in vivo and suggests that AFS cells may be an effective cell source for functional repair of large bone defects
Resumo:
Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(varepsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.
Resumo:
A complete series of cross-sectional computed tomography (CT) scans were obtained of a mummy of an Egyptian priestess, Tjenmutengebtiu, (Jeni), who lived in the twenty-second Dynasty (c. 945-715 BC). The purpose of this joint British Museum and St. Thomas’ Hospital project was effectively to ‘unwrap’ a mummy using cross-sectional X-rays. Jeni is encased in a beautifully decorated anthropomorphic cartonnage coffin. The head and neck were scanned with 2mm slices, the teeth with 1mm slices and the rest of the body with 4 mm slices, a 512 x 512 matrix was used. The 2D CT images, and 3D surface reconstruction’s, demonstrate many features of the embalming techniques and funerary customs of the XXII Dynasty. The presence of cloth protruding from the nasal cavities into the otherwise empty cranial cavity indicates that the brain was extracted via the nose. The remains of the heart can be seen as well as four organ packs corresponding to the mummified and repackaged lungs, intestines, stomach and liver. Each of the organ packs encloses a wax figurine representing one of the four sons of Horus. The teeth are in very good condition with little signs of wear, which, considering the gritty diet of the Egyptians, indicates that Jeni must have been very young when she died. A young age of death is also suggested by analysis of the shape of the molar teeth. The body is generally in very good condition demonstrating the consummate skill of the twenty-second Dynasty embalmers.