903 resultados para Structural development
Resumo:
Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by the presence of motor and vocal tics. We hypothesized that patients with this syndrome would present an aberrant pattern of cortical formation, which could potentially reflect global alterations of brain development. Using 3 Tesla structural neuroimaging, we compared sulcal depth, opening, and length and thickness of sulcal gray matter in 52 adult patients and 52 matched controls. Cortical sulci were automatically reconstructed and identified over the whole brain, using BrainVisa software. We focused on frontal, parietal, and temporal cortical regions, in which abnormal structure and functional activity were identified in previous neuroimaging studies. Partial correlation analysis with age, sex, and treatment as covariables of noninterest was performed amongst relevant clinical and neuroimaging variables in patients. Patients with Gilles de la Tourette syndrome showed lower depth and reduced thickness of gray matter in the pre- and post-central as well as superior, inferior, and internal frontal sulci. In patients with associated obsessive-compulsive disorder, additional structural changes were found in temporal, insular, and olfactory sulci. Crucially, severity of tics and of obsessive-compulsive disorder measured by Yale Global Tic severity scale and Yale-Brown Obsessive-Compulsive scale, respectively, correlated with structural sulcal changes in sensorimotor, temporal, dorsolateral prefrontal, and middle cingulate cortical areas. Patients with Gilles de la Tourette syndrome displayed an abnormal structural pattern of cortical sulci, which correlated with severity of clinical symptoms. Our results provide further evidence of abnormal brain development in GTS. © 2015 International Parkinson and Movement Disorder Society.
Resumo:
The majority of people who sustain hip fractures after a fall to the side would not have been identified using current screening techniques such as areal bone mineral density. Identifying them, however, is essential so that appropriate pharmacological or lifestyle interventions can be implemented. A protocol, demonstrated on a single specimen, is introduced, comprising the following components; in vitro biofidelic drop tower testing of a proximal femur; high-speed image analysis through digital image correlation; detailed accounting of the energy present during the drop tower test; organ level finite element simulations of the drop tower test; micro level finite element simulations of critical volumes of interest in the trabecular bone. Fracture in the femoral specimen initiated in the superior part of the neck. Measured fracture load was 3760 N, compared to 4871 N predicted based on the finite element analysis. Digital image correlation showed compressive surface strains as high as 7.1% prior to fracture. Voxel level results were consistent with high-speed video data and helped identify hidden local structural weaknesses. We found using a drop tower test protocol that a femoral neck fracture can be created with a fall velocity and energy representative of a sideways fall from standing. Additionally, we found that the nested explicit finite element method used allowed us to identify local structural weaknesses associated with femur fracture initiation.
Resumo:
The adjustment of X-linked gene expression to the X chromosome copy number (dosage compensation [DC]) has been widely studied as a model of chromosome-wide gene regulation. In Caenorhabditis elegans, DC is achieved by twofold down-regulation of gene expression from both Xs in hermaphrodites. We show that in males, the single X chromosome interacts with nuclear pore proteins, while in hermaphrodites, the DC complex (DCC) impairs this interaction and alters X localization. Our results put forward a structural model of DC in which X-specific sequences locate the X chromosome in transcriptionally active domains in males, while the DCC prevents this in hermaphrodites.
Resumo:
Antisense oligonucleotides deserve great attention as potential drug candidates for the treatment of genetic disorders. For example, muscle dystrophy can be treated successfully in mice by antisense-induced exon skipping in the pre-mRNA coding for the structural protein dystrophin in muscle cells. For this purpose a sugar- and backbone-modified DNA analogue was designed, in which a tricyclic ring system substitutes the deoxyribose. These chemical modifications stabilize the dimers formed with the targeted RNA relative to native nucleic acid duplexes and increase the biostability of the antisense oligonucleotide. While evading enzymatic degradation constitutes an essential property of antisense oligonucleotides for therapeutic application, it renders the oligonucleotide inaccessible to biochemical sequencing techniques and requires the development of alternative methods based on mass spectrometry. The set of sequences studied includes tcDNA oligonucleotides ranging from 10 to 15 nucleotides in length as well as their hybrid duplexes with DNA and RNA complements. All samples were analyzed on a LTQ Orbitrap XL instrument equipped with a nano-electrospray source. For tandem mass spectrometric experiments collision-induced dissociation was performed, using helium as collision gas. Mass spectrometric sequencing of tcDNA oligomers manifests the applicability of the technique to substrates beyond the scope of enzyme-based methods. Sequencing requires the formation of characteristic backbone fragments, which take the form of a-B- and w-ions in the product ion spectra of tcDNA. These types of product ions are typically associated with unmodified DNA, which suggests a DNA-like fragmentation mechanism in tcDNA. The loss of nucleobases constitutes the second prevalent dissociation pathway observed in tcDNA. Comparison of partially and fully modified oligonucleotides indicates a pronounced impact of the sugar-moiety on the base loss. As this event initiates cleavage of the backbone, the presented results provide new mechanistic insights into the fragmentation of DNA in the gas-phase. The influence of the sugar-moiety on the dissociation extends to tcDNA:DNA and tcDNA:RNA hybrid duplexes, where base loss was found to be much more prominent from sugar-modified oligonucleotides than from their natural complements. Further prominent dissociation channels are strand separation and backbone cleavage of the single strands, as well as the ejection of backbone fragments from the intact duplex. The latter pathway depends noticeably on the base sequence. Moreover, it gives evidence of the high stability of the hybrid dimers, and thus directly reflects the affinity of tcDNA for its target in the cell. As the cellular target of tcDNA is a pre-mRNA, the structure was designed to discriminate RNA from DNA complements, which could be demonstrated by mass spectrometric experiments.
Resumo:
Volunteers are still the most important resource for amateur football clubs. However, stable voluntary engagement can no longer be granted. This difficulty is confirmed by existing research across various European countries. From a club management point of view, a detailed understanding of how to attract volunteers and retain them is becoming a high priority. The purpose of this study is (1) to analyse the influence of individual characteristics and corresponding organisational conditions on volunteering and (2) to examine the decision-making processes in relation to implement effective strategies for recruiting volunteers. To answer these questions, the current state of research is summarised and then a multi-level-framework is developed which is based on the structural-individualistic social theory. The individual and context factors for volunteering are estimated in different multi-level models based on a sample of n=1,434 sport club members from 36 sport clubs in Switzerland. Results indicate that volunteering is not just an outcome of individual characteristics such as lower workloads, higher income, children belonging to the sport club, longer club membership, or a strong commitment to the club. It is also influenced by club-specific structural conditions. Concerning decision-making processes an in-depth analysis of recruitment practices for volunteers was conducted in selected clubs (case study design). based on the garbage can model. The results show that systematically designed decision-making processes with a clear regulation of responsibilities seem to solve personnel problems more purposefully and more quickly. Based on the findings some recommendations for volunteer management in football clubs are worked out.
Resumo:
Sry and Wnt4 cDNAs were individually introduced into the ubiquitously-expressed Rosa26 ( R26) locus by gene targeting in embryonic stem (ES) cells to create a conditional gene expression system in mice. In the targeted alleles, expression of these cDNAs should be blocked by a neomycin resistance selection cassette that is flanked by loxP sites. Transgene expression should be activated after the blocking cassette is deleted by Cre recombinase. ^ To test this conditional expression system, I have bred R26-stop- Sry and R26-stop-Wnt4 heterozygotes with a MisRII-Cre mouse line that expresses Cre in the gonads of both sexes. Analysis of these two types of bigenic heterozygotes indicated that their gonads developed normally like those of wild types. However, one XX R26-Sry/R26-Sry; MisR2-Cre/+ showed epididymis-like structures resembling those of males. In contrast, only normal phenotypes were observed in XY R26-Wnt4/R26-Wnt4; MisR2-Cre /+ mice. To interpret these results, I have tested for Cre recombinase activity by Southern blot and transcription of the Sry and Wnt4 transgenes by RT-PCR. Results showed that bigenic mutants had insufficient activation of the transgenes in their gonads at E12.5 and E13.5. Therefore, the failure to observe mutant phenotypes may have resulted from low activity of MisR2-Cre recombination at the appropriate time. ^ Col2a1-Cre transgenic mice express Cre in differentiating chondrocytes. R26-Wnt4; Col2a1-Cre bigenic heterozygous mice were found to exhibit a dramatic alteration in growth presumably caused by Wnt4 overexpression during chondrogenesis. R26-Wnt4; Col2a1-Cre mice exhibited dwarfism beginning approximately 10 days after birth. In addition, they also had craniofacial abnormalities, and had delayed ossification of the lumbar vertebrate and pelvic bones. Histological analysis of the growth plates of R26-Wnt4; Col2a1-Cre mice revealed less structural organization and a delay in onset of the primary and secondary ossification centers. Molecular studies confirmed that overexpression of Wnt4 causes decreased proliferation and early maturation of chondrocytes. In addition, R26-Wnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF), suggesting that defects in vascularization may contribute to the dwarf phenotype. Finally, 9-month-old R26-Wnt4; Col2a1-Cre mice had significantly more fat cells in the marrow cavities of their metaphysis long bones, implying that long-term overexpression of Wnt4may cause bone marrow pathologies. In conclusion, Wnt4 was activated by Col2a1-Cre recombinase and was overexpressed in the growth plate, resulting in aberrant proliferation and differentiation of chondrocytes, and ultimately leads to dwarfism in mice. ^
Resumo:
Tumor necrosis factor (TNF)-Receptor Associated Factors (TRAFs) are a family of signal transducer proteins. TRAF6 is a unique member of this family in that it is involved in not only the TNF superfamily, but the toll-like receptor (TLR)/IL-1R (TIR) superfamily. The formation of the complex consisting of Receptor Activator of Nuclear Factor κ B (RANK), with its ligand (RANKL) results in the recruitment of TRAF6, which activates NF-κB, JNK and MAP kinase pathways. TRAF6 is critical in signaling with leading to release of various growth factors in bone, and promotes osteoclastogenesis. TRAF6 has also been implicated as an oncogene in lung cancer and as a target in multiple myeloma. In the hopes of developing small molecule inhibitors of the TRAF6-RANK interaction, multiple steps were carried out. Computational prediction of hot spot residues on the protein-protein interaction of TRAF6 and RANK were examined. Three methods were used: Robetta, KFC2, and HotPoint, each of which uses a different methodology to determine if a residue is a hot spot. These hot spot predictions were considered the basis for resolving the binding site for in silico high-throughput screening using GOLD and the MyriaScreen database of drug/lead-like compounds. Computationally intensive molecular dynamics simulations highlighted the binding mechanism and TRAF6 structural changes upon hit binding. Compounds identified as hits were verified using a GST-pull down assay, comparing inhibition to a RANK decoy peptide. Since many drugs fail due to lack of efficacy and toxicity, predictive models for the evaluation of the LD50 and bioavailability of our TRAF6 hits, and these models can be used towards other drugs and small molecule therapeutics as well. Datasets of compounds and their corresponding bioavailability and LD50 values were curated based, and QSAR models were built using molecular descriptors of these compounds using the k-nearest neighbor (k-NN) method, and quality of these models were cross-validated.
Resumo:
Two sets of mass spectrometry-based methods were developed specifically for the in vivo study of extracellular neuropeptide biochemistry. First, an integrated micro-concentration/desalting/matrix-addition device was constructed for matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) to achieve attomole sensitivity for microdialysis samples. Second, capillary electrophoresis (CE) was incorporated into the above micro-liquid chromatography (LC) and MALDI MS system to provide two-dimensional separation and identification (i.e. electrophoretic mobility and molecular mass) for the analysis of complex mixtures. The latter technique includes two parts of instrumentation: (1) the coupling of a preconcentration LC column to the inlet of a CE capillary, and (2) the utilization of a matrix-precoated membrane target for continuous CE effluent deposition and for automatic MALDI MS analysis (imaging) of the CE track.^ Initial in vivo data reveals a carboxypeptidase A (CPA) activity in rat brain involved in extracellular neurotensin metabolism. Benzylsuccinic acid, a CPA inhibitor, inhibited neurotensin metabolite NT1-12 formation by 70%, while inhibitors of other major extracellular peptide metabolizing enzymes increased NT1-12 formation. CPA activity has not been observed in previous in vitro experiments. Next, the validity of the methodology was demonstrated in the detection and structural elucidation of an endogenous neuropeptide, (L)VV-hemorphin-7, in rat brain upon ATP stimulation. Finally, the combined micro-LC/CE/MALDI MS was used in the in vivo metabolic study of peptide E, a mu-selective opioid peptide with 25 amino acid residues. Profiles of 88 metabolites were obtained, their identity being determined by their mass-to-charge ratio and electrophoretic mobility. The results indicate that there are several primary cleavage sites in vivo for peptide E in the release of its enkephalin-containing fragments. ^
Resumo:
Decorin, a dermatan/chondroitin sulfate proteoglycan, is ubiquitously distributed in the extracellular matrix (ECM) of mammals. Decorin belongs to the small leucine rich proteoglycan (SLRP) family, a proteoglycan family characterized by a core protein dominated by Leucine Rich Repeat motifs. The decorin core protein appears to mediate the binding of decorin to ECM molecules, such as collagens and fibronectin. It is believed that the interactions of decorin with these ECM molecules contribute to the regulation of ECM assembly, cell adhesions, and cell proliferation. These basic biological processes play critical roles during embryonic development and wound healing and are altered in pathological conditions such as fibrosis and tumorgenesis. ^ In this dissertation, we discover that decorin core protein can bind to Zn2+ ions with high affinity. Zinc is an essential trace element in mammals. Zn2+ ions play a catalytic role in the activation of many enzymes and a structural role in the stabilization of protein conformation. By examining purified recombinant decorin and its core protein fragments for Zn2+ binding activity using Zn2+-chelating column chromatography and Zn2+-equilibrium dialysis approaches, we have located the Zn2+ binding domain to the N-terminal sequence of the decorin core protein. The decorin N-terminal domain appears to contain two Zn2+ binding sites with similar high binding affinity. The sequence of the decorin N-terminal domain does not resemble any other reported zinc-binding motifs and, therefore, represents a novel Zn 2+ binding motif. By investigating the influence of Zn2+ ions on decorin binding interactions, we found a novel Zn2+ dependent interaction with fibrinogen, the major plasma protein in blood clots. Furthermore, a recombinant peptide (MD4) consisting of a 41 amino acid sequence of mouse decorin N-terminal domain can prolong thrombin induced fibrinogen/fibrin clot formation. This suggests that in the presence of Zn2+ the decorin N-terminal domain has an anticoagulation activity. The changed Zn2+-binding activities of the truncated MD4 peptides and site-directed mutagenesis generated mutant peptides revealed that the functional MD4 peptide might contain both a structural zinc-binding site in the cysteine cluster region and a catalytic zinc site that could be created by the flanking sequences of the cysteine cluster region. A model of a loop-like structure for MD4 peptide is proposed. ^
Resumo:
Normal development and tissue homeostasis requires the carefully orchestrated balance between cell proliferation and cell death. Cell cycle checkpoints control the extent of cell proliferation. Cell death is coordinated through the activation of a cell suicide pathway that results in the morphologically recognizable form of death, apoptosis. Tumorigenesis requires that the balance between these two pathways be disrupted. The tumor suppressor protein Rb has not only been shown to be involved in the enforcement of cell cycle checkpoints, but has also been implicated in playing a role in the regulation of apoptosis. The manner in which Rb enforces cell cycle checkpoints has been well studied; however, its involvement in the regulation of apoptosis is still very unclear. p84N5 is a novel nuclear death domain containing protein that has been shown to interact with the N-terminus of Rb. The fact that it contains a death domain and the fact that it is nuclear localized possibly provides the first known mechanism for apoptotic signaling from the nucleus. The following study tested the hypothesis that the novel exclusively nuclear death domain containing protein p84N5 is an important mediator of programmed cell death and that its apoptotic function is reliant upon its nuclear localization and is regulated by unique functional domains within the p84N5 protein. We identified the p84N5 nuclear localization signal (NLS), eliminated it, and tested the functional significance of nuclear localization by using wild type and mutant sequences fused to EGFP-C1 (Clontech) to create wild type GFPN5 and subsequent mutants. The results of these assays demonstrated exclusive nuclear localization of GFPN5 is required for normal p84N5 induced apoptosis. We further conducted large-scale mutagenesis of the GFPN5 construct to identify a minimal region within p84N5 capable of interacting with Rb. We were able to identify a minimal sequence containing p84N5 amino acids 318 to 464 that was capable of interacting with Rb in co-immunoprecipitation assays. We continued by conducting a structural and functional analysis to identify the region or regions within p84N5 responsible for inducing apoptosis. Point mutations and small-scale deletions within the death domain of p84N5 lessened the effect but did not eliminate p84N5-induced cytotoxicity. Further analysis revealed that the minimal sequence of 318 to 464 of p84N5 was capable of inducing apoptosis to a similar degree as wild-type GFPN5 protein. Since amino acids 318 to 464 of p84N5 are capable of inducing apoptosis and interacting with Rb, we propose possible mechanisms whereby p84N5 may function in a Rb regulated manner. These results demonstrate that p84N5 induced apoptosis is reliant upon its nuclear localization and is regulated by unique functional domains within the p84N5 protein. ^
Resumo:
Abundant serpentinite seamounts are found along the outer high of the Mariana forearc at the top of the inner slope of the trench. One of them, Conical Seamount, was drilled at Sites 778, 779, and 780 during Leg 125. The rocks recovered at Holes 779A and 780C, respectively, on the flanks and at the summit of the seamount, include moderately serpentinized depleted harzburgites and some dunites. These rocks exhibit evidence of resorption of the orthopyroxene, when present, and the local presence of very calcic-rich diopside in veins oblique to the main high-temperature foliation of the rock. The peridotites, initially well-foliated with locally poikiloblastic textures, show overprints of a two-stage deformation history: (1) a high-temperature (>1000°C), low-stress (0.02 GPa), homogeneous deformation that has led to the present Porphyroclastic textures displayed by the rocks and (2) heterogeneous ductile shearing at a much higher stress (0.05 GPa). This heterogeneous shearing probably describes a single tectonic event because it began at high temperatures, producing dynamic recrystallization of olivine in the shear zone, and ended at low temperatures in the stability field of chlorite and serpentine. In a few samples, olivine shows evidence of quasi-hydrostatic recrystallization at a very high temperature. Here, we propose that this recrystallization was related to fluid/magma percolation, a process that can also account for the resorption of the orthopyroxene and for the late crystallization of diopside veins in the rock. The impregnation by fluid or magma, development of the main high-temperature, low-stress deformation, and subsequent migration recrystallization of olivine probably occurred in a mantle fragment involved in the arc formation. In addition, this mantle has preserved structures that may have formed earlier in the oceanic lithosphere upon which the arc formed. Heterogeneous ductile shear zones in the peridotites may have developed during uplift. The "cold" deformation may have taken place during diapiric rise of hot mantle that underwent subsequent serpentinization or gliding along normal faults associated with the extension of the eastern margin of the forearc.
Resumo:
The following paper is based on the author's two-year research and fieldwork in Iran and examines the process of political and social changes since the Iranian Revolution of 1979 and the subsequent impact of the Iran-Iraq War of 1980-88. This paper focuses on the transition of traditional, small villages into rusta-shahr or small rural cities and the first and second nation-wide elections of shoura or councils which were the first steps toward self-government. The author is guardedly optimistic regarding this democratic process but warns of possible future social unrest if changes are not more "balanced" between cities and rural areas and if the employment needs of the burgeoning younger generation are not met, political and social consequences may be catastrophic.
Resumo:
Crossed-arch domes are a singular type of ribbed vaults. Their characteristic feature is that the ribs that form the vault are intertwined, forming polygons or stars, leaving an empty space in the centre. The earliest known vaults of this type are found in the Great Mosque of Córdoba, built ca. 960 a.C. The type spread through Spain, and the north of Africa in the 10th to the 16th Centuries, and was used by Guarini and Vittone in the 17th and 18th Centuries in Italy. However, it was used only in a few buildings. Though the literature about the structural behaviour of ribbed Gothic vaults is extensive, so far no structural analysis of crossed arch domes has been made. The purpose of this work is, first to show the way to attack such an analysis within the frame of Modern Limit Analysis of Masonry Structures (Heyman 1995), and then to apply the approach to study the stability of the dome of the Capilla de Villaviciosa. The work may give some clues to art and architectural historians to understand better the origin and development of Islamic dome architecture.
Resumo:
The European HiPER project aims to demonstrate commercial viability of inertial fusion energy within the following two decades. This goal requires an extensive Research &Development program on materials for different applications (e.g., first wall, structural components and final optics). In this paper we will discuss our activities in the framework of HiPER to develop materials studies for the different areas of interest. The chamber first wall will have to withstand explosions of at least 100 MJ at a repetition rate of 5-10 Hz. If direct drive targets are used, a dry wall chamber operated in vacuum is preferable. In this situation the major threat for the wall stems from ions. For reasonably low chamber radius (5-10 m) new materials based on W and C are being investigated, e.g., engineered surfaces and nanostructured materials. Structural materials will be subject to high fluxes of neutrons leading to deleterious effects, such as, swelling. Low activation advanced steels as well as new nanostructured materials are being investigated. The final optics lenses will not survive the extreme ion irradiation pulses originated in the explosions. Therefore, mitigation strategies are being investigated. In addition, efforts are being carried out in understanding optimized conditions to minimize the loss of optical properties by neutron and gamma irradiation
Resumo:
Apple fruits, cv. Granny Smith, were subjected to mechanical impact and compression loads utilizing a steel rod with a spherical tip 19 mm diameter, 50.6 g mass. Energies applied were low enough to produce enzymatic reaction: 0.0120 J for impact, and 0.0199 J for compression. Bruised material was cut and examined with a transmission electron microscope. In both compression and impact, bruises showed a central region located in the flesh parenchyma, at a distance that approximately equalled the indentor tip radius. The parenchyma cells of this region were more altered than cells from the epidermis and hypodermis. Tissues under compression presented numerous deformed parenchyma cells with broken tonoplasts and tissue degradation as predicted by several investigators. The impacted cells supported different kinds of stresses than compressed cells, resulting in the formation of intensive vesiculation, either in the vacuole or in the middle lamella region between cell walls of adjacent cells. A large proportion of parenchyma cells completely split or had initiated splitting at the middle lamella. Bruising may develop with or without cell rupture. Therefore, cell wall rupture is not essential for the development of a bruise, at least the smallest one, as predicted previously