947 resultados para String octets (Violins (4), violas (2), violoncellos (2))
Resumo:
Animals, including humans, express two isoforms of acetyl-CoA carboxylase (EC 6.4.1.2), ACC1 (Mr = 265 kDa) and ACC2 (Mr = 280 kDa). The predicted amino acid sequence of ACC2 contains an additional 136 aa relative to ACC1, 114 of which constitute the unique N-terminal sequence of ACC2. The hydropathic profiles of the two ACC isoforms generally are comparable, except for the unique N-terminal sequence in ACC2. The sequence of amino acid residues 1–20 of ACC2 is highly hydrophobic, suggesting that it is a leader sequence that targets ACC2 for insertion into membranes. The subcellular localization of ACC2 in mammalian cells was determined by performing immunofluorescence microscopic analysis using affinity-purified anti-ACC2-specific antibodies and transient expression of the green fluorescent protein fused to the C terminus of the N-terminal sequences of ACC1 and ACC2. These analyses demonstrated that ACC1 is a cytosolic protein and that ACC2 was associated with the mitochondria, a finding that was confirmed further by the immunocolocalization of a known human mitochondria-specific protein and the carnitine palmitoyltransferase 1. Based on analyses of the fusion proteins of ACC–green fluorescent protein, we concluded that the N-terminal sequences of ACC2 are responsible for mitochondrial targeting of ACC2. The association of ACC2 with the mitochondria is consistent with the hypothesis that ACC2 is involved in the regulation of mitochondrial fatty acid oxidation through the inhibition of carnitine palmitoyltransferase 1 by its product malonyl-CoA.
Resumo:
In analogy to the [M(II)(bpy)(3)](2+) cations, where M(II) is a divalent transition-metal and bpy is 2,2'-bipyridine, the tris-chelated [M(III)(bpy)(3)](3+) cations, where M(III) is Cr(III) or Co(III), induce the crystallization of chiral, anionic three-dimensional (3D) coordination polymers of oxalate-bridged (&mgr;-ox) metal complexes with stoichiometries [M(II)(2)(ox)(3)](n)()(2)(n)()(-) or [M(I)M(III)(ox)(3)](n)()(2)(n)()(-). The tripositive charge is partially compensated by inclusion of additional complex anions like ClO(4)(-), BF(4)(-), or PF(6)(-) which are encapsulated in cubic shaped cavities formed by the bipyridine ligands of the cations. Thus, an elaborate structure of cationic and anionic species within a polymeric anionic network is realized. The compounds isolated and structurally characterized include [Cr(III)(bpy)(3)][ClO(4)] [NaCr(III)(ox)(3)] (1), [Cr(III)(bpy)(3)][ClO(4)][Mn(II)(2)(ox)(3)] (2), [Cr(III)(bpy)(3)][BF(4)] [Mn(II)(2)(ox)(3)] (3), [Co(III)(bpy)(3)][PF(6)][NaCr(III)(ox)(3)] (4). Crystal data: 1, cubic, P2(1)3, a = 15.523(4) Å, Z = 4; 2, cubic, P4(1)32, a = 15.564(3) Å, Z = 4; 3, cubic, P4(1)32, a = 15.553(3) Å, Z = 4; 4, cubic, P2(1)3, a = 15.515(3) Å, Z = 4. Furthermore, it seemed likely that 1,2-dithiooxalate (dto) could act as an alternative to the oxalate bridging ligand, and as a result the compound [Ni(II)(phen)(3)][NaCo(III)(dto)(3)].C(3)H(6)O (5) has successfully been isolated and structurally characterized. Crystal data: 5, orthorhombic, P2(1)2(1)2(1), a = 16.238(4) Å, b = 16.225(4) Å, c = 18.371(5) Å, Z = 4. In addition, the photophysical properties of compound 1 have been investigated in detail. In single crystal absorption spectra of [Cr(III)(bpy)(3)][ClO(4)][NaCr(III)(ox)(3)] (1), the spin-flip transitions of both the [Cr(bpy)(3)](3+) and the [Cr(ox)(3)](3)(-) chromophores are observed and can be clearly distinguished. Irradiating into the spin-allowed (4)A(2) --> (4)T(2) absorption band of [Cr(ox)(3)](3)(-) results in intense luminescence from the (2)E state of [Cr(bpy)(3)](3+) as a result of rapid energy transfer processes.
Resumo:
Vertical distributions of benthic denitrification and anammox rates within the sediment were estimated from slurry incubation experiments. Rates were used to calculate the contribution of anammox and denitrification to the total N-loss. Briefly, MUC sediment cores were sliced in 2 cm intervals and the sediment was diluted and incubated with degassed bottom water in a gas tight bag. After pre-incubating the bags for 2 h, 15N-labeled substrates were injected into the bags and the slurries were thoroughly mixed. Incubations were performed in the dark at in situ temperatures. The N2 isotope ratio (28N2, 29N2, and 30N2) was determined by gas chromatography-isotopic ratio mass spectrometry (VG Optima, Micromass) and calculated according to Kuypers et al. (2005) and Holtappels et al. (2011), respectively.Furthermore, total organic carbon and nitrogen concentrations were measured of core sediment layers corresponding to those used for rate measurements. Concentrations of organic carbon and nitrogen were determined by combustion/gas chromatography (Carlo Erba NA-1500 CNS analyzer) of dried sediment samples after acidification. The same sediment layer were also used to extract nucleic acids. The concentrations of the DNA in the samples were measured spectrophotometrically with a NanoDrop instrument (Thermo Fisher Scientific Inc.). The biomarker functional gene nirS, encoding the cd1-containing nitrite reductase, for both denitrifiers and marine anammox bacteria were quantified with real-time PCR, using the primers cd3aF/R3cd (5'-GTSAACGTSAAGGARACSGG-3' (Michotey et al., 2000)/5'-GASTTCGGRTGSGTCTTGA-3'; Throback et al., 2004) and Scnir372F/Scnir845R (5'-TGTAGCCAGCATTGTAGCGT-3'/5'-TCAAGCCAGACCCATTTGCT-3'; Lam et al., 2009).