972 resultados para Strictly hyperbolic polynomial


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In technicolor theories the scalar sector of the Standard Model is replaced by a strongly interacting sector. Although the Standard Model has been exceptionally successful, the scalar sector causes theoretical problems that make these theories seem an attractive alternative. I begin my thesis by considering QCD, which is the known example of strong interactions. The theory exhibits two phenomena: confinement and chiral symmetry breaking. I find the low-energy dynamics to be similar to that of the sigma models. Then I analyze the problems of the Standard Model Higgs sector, mainly the unnaturalness and triviality. Motivated by the example of QCD, I introduce the minimal technicolor model to resolve these problems. I demonstrate the minimal model to be free of anomalies and then deduce the main elements of its low-energy particle spectrum. I find the particle spectrum contains massless or very light technipions, and also technibaryons and techni-vector mesons with a high mass of over 1 TeV. Standard Model fermions remain strictly massless at this stage. Thus I introduce the technicolor companion theory of flavor, called extended technicolor. I show that the Standard Model fermions and technihadrons receive masses, but that they remain too light. I also discuss flavor-changing neutral currents and precision electroweak measurements. I then show that walking technicolor models partly solve these problems. In these models, contrary to QCD, the coupling evolves slowly over a large energy scale. This behavior adds to the masses so that even the light technihadrons are too heavy to be detected at current particle accelerators. Also all observed masses of the Standard Model particles can be generated, except for the bottom and top quarks. Thus it is shown in this thesis that, excluding the masses of third generation quarks, theories based on walking technicolor can in principle produce the observed particle spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a method of solving certain third-order non-linear systems by using themethod of ultraspherical polynomial approximation is proposed. By using the method of variation of parameters the third-order equation is reduced to three partial differential equations. Instead of being averaged over a cycle, the non-linear functions are expanded in ultraspherical polynomials and with only the constant term retained, the equations are solved. The results of the procedure are compared with the numerical solutions obtained on a digital computer. A degenerate third-order system is also considered and results obtained for the above system are compared with numerical results obtained on the digital computer. There is good agreement between the results obtained by the proposed method and the numerical solution obtained on digital computer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The family of location and scale mixtures of Gaussians has the ability to generate a number of flexible distributional forms. The family nests as particular cases several important asymmetric distributions like the Generalized Hyperbolic distribution. The Generalized Hyperbolic distribution in turn nests many other well known distributions such as the Normal Inverse Gaussian. In a multivariate setting, an extension of the standard location and scale mixture concept is proposed into a so called multiple scaled framework which has the advantage of allowing different tail and skewness behaviours in each dimension with arbitrary correlation between dimensions. Estimation of the parameters is provided via an EM algorithm and extended to cover the case of mixtures of such multiple scaled distributions for application to clustering. Assessments on simulated and real data confirm the gain in degrees of freedom and flexibility in modelling data of varying tail behaviour and directional shape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report an efficient and fast solvothermal route to prepare highly crystalline monodispersed InP quantum dots. This solvothermal route, not only ensures inert atmosphere, which is strictly required for the synthesis of phase pure InP quantum dots but also allows a reaction temperature as high as 430 degrees C, which is otherwise impossible to achieve using a typical solution chemistry; the higher reaction temperature makes the reaction more facile. This method also has a judicious control over the size of the quantum dots and thus in tuning the bandgap.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. 1.|Carotene 15,15′-dioxygenase (EC 1.13.11.21) has been isolated from the intestine of guinea pig and rabbit and purified 38- and 30-fold, respectively, but subjecting the intestinal homogenate to protamine sulfate treatment, (NH4)2SO4 fractionation and acetone precipitation. 2. 2.|The guinea pig enzyme showed a pH optimum at 8.5, an optimum substrate concentration of 200 nmoles of β,β-carotene per 25 ml of reaction mixture, an apparent Km with β,β-carotene as substrate of 9.5 · 10−6 M and a V 3.3 nmoles of retinal formation/mg protein per h. The reaction was linear upto 3 h and the reaction rate increased linearly with increase in enzyme protein concentration. The enzyme was activated by GSH and Fe2+ and inhibited by sodium dodecylsulfate, sulfhydryl binding and iron chelating agents. 3. 3.|The reaction catalysed by guinea pig enzyme was strictly stoichiometric. 4. 4.|Rabbit enzyme showed a close similarity with guinea pig enzyme with respect to time course, optimum substrate concentration, activation by Fe2+ and GSH, inhibition by sodium dodecylsulfate, iron chelating and sulfhydryl binding agents. However, it showed a slightly lower pH optimum (pH 7.8). 5. 5.|The enzyme from guinea pig and rabbit showed remarkable similarity with respect to cleavage of carotenoids. The enzyme from both the species was more specific for β,β-carotene but could also cleave a number of other carotenoids at the 15,15′-double bond. 6. 6.|10′-Apo-β-carotenal and 10′-apo-β-carotenol were readily cleaved compared with other apo-β-carotenals and apo-β-carotenols tested. 7. 7.|It has been conclusively shown for the first time that mono-ring substituted carotenoids are also cleaved at the 15,15′-double bond.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bibliography : p. 144-148.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motion due to an oscillatory point source in a rotating stratified fluid has been studied by Sarma & Naidu (1972) by using threefold Fourier transforms. The solution obtained by them in the hyperbolic case is wrong since they did not make use of any radiation condition, which is always necessary to get the correct solution. Whenever the motion is created by a source, the condition of radiation is that the sources must remain sources, not sinks of energy and no energy may be radiated from infinity into the prescribed singularities of the field. The purpose of the present note is to explain how Lighthill's (1960) radiation condition can be applied in the hyperbolic case to pick the correct solution. Further, the solution thus obtained is reiterated by an alternative procedure using Sommerfeld's (1964) radiation condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parametric resonance in a system having two modes of the same frequency is studied. The simultaneous occurence of the instabilities of the first and second kind is examined, by using a generalized perturbation procedure. The region of instability in the first approximation is obtained by using the Sturm's theorem for the roots of a polynomial equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-tuning is applied to the control of nonlinear systems represented by the Hammerstein model wherein the nonlinearity is any odd-order polynomial. But control costing is not feasible in general. Initial relay control is employed to contain the deviations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a feedback system consisting of a transfer function $G(s)$ in the forward path and a time-varying gain $n(t)(0 \leqq n(t) \leqq k)$ in the feedback loop, a stability multiplier $Z(s)$ has been constructed (and used to prove stability) by Freedman [2] such that $Z(s)(G(s) + {1 / K})$ and $Z(s - \sigma )(0 < \sigma < \sigma _ * )$ are strictly positive real, where $\sigma _ * $ can be computed from a knowledge of the phase-angle characteristic of $G(i\omega ) + {1 / k}$ and the time-varying gain $n(t)$ is restricted by $\sigma _ * $ by means of an integral inequality. In this note it is shown that an improved value for $\sigma _ * $ is possible by making some modifications in his derivation. ©1973 Society for Industrial and Applied Mathematics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of an atomic decomposition was introduced by Coifman and Rochberg (1980) for weighted Bergman spaces on the unit disk. By the Riemann mapping theorem, functions in every simply connected domain in the complex plane have an atomic decomposition. However, a decomposition resulting from a conformal mapping of the unit disk tends to be very implicit and often lacks a clear connection to the geometry of the domain that it has been mapped into. The lattice of points, where the atoms of the decomposition are evaluated, usually follows the geometry of the original domain, but after mapping the domain into another this connection is easily lost and the layout of points becomes seemingly random. In the first article we construct an atomic decomposition directly on a weighted Bergman space on a class of regulated, simply connected domains. The construction uses the geometric properties of the regulated domain, but does not explicitly involve any conformal Riemann map from the unit disk. It is known that the Bergman projection is not bounded on the space L-infinity of bounded measurable functions. Taskinen (2004) introduced the locally convex spaces LV-infinity consisting of measurable and HV-infinity of analytic functions on the unit disk with the latter being a closed subspace of the former. They have the property that the Bergman projection is continuous from LV-infinity onto HV-infinity and, in some sense, the space HV-infinity is the smallest possible substitute to the space H-infinity of analytic functions. In the second article we extend the above result to a smoothly bounded strictly pseudoconvex domain. Here the related reproducing kernels are usually not known explicitly, and thus the proof of continuity of the Bergman projection is based on generalised Forelli-Rudin estimates instead of integral representations. The minimality of the space LV-infinity is shown by using peaking functions first constructed by Bell (1981). Taskinen (2003) showed that on the unit disk the space HV-infinity admits an atomic decomposition. This result is generalised in the third article by constructing an atomic decomposition for the space HV-infinity on a smoothly bounded strictly pseudoconvex domain. In this case every function can be presented as a linear combination of atoms such that the coefficient sequence belongs to a suitable Köthe co-echelon space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a Hamiltonian describing a pendulum coupled with several anisochronous oscillators, giving a simple construction of unstable KAM tori and their stable and unstable manifolds for analytic perturbations. When the coupling takes place through an even trigonometric polynomial in the angle variables, we extend analytically the solutions of the equations of motion, order by order in the perturbation parameter, to a large neighbourhood of the real line representing time. Subsequently, we devise an asymptotic expansion for the splitting (matrix) associated with a homoclinic point. This expansion consists of contributions that are manifestly exponentially small in the limit of vanishing gravity, by a shift-of-countour argument. Hence, we infer a similar upper bound for the splitting itself. In particular, the derivation of the result does not call for a tree expansion with explicit cancellation mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planar curves arise naturally as interfaces between two regions of the plane. An important part of statistical physics is the study of lattice models. This thesis is about the interfaces of 2D lattice models. The scaling limit is an infinite system limit which is taken by letting the lattice mesh decrease to zero. At criticality, the scaling limit of an interface is one of the SLE curves (Schramm-Loewner evolution), introduced by Oded Schramm. This family of random curves is parametrized by a real variable, which determines the universality class of the model. The first and the second paper of this thesis study properties of SLEs. They contain two different methods to study the whole SLE curve, which is, in fact, the most interesting object from the statistical physics point of view. These methods are applied to study two symmetries of SLE: reversibility and duality. The first paper uses an algebraic method and a representation of the Virasoro algebra to find common martingales to different processes, and that way, to confirm the symmetries for polynomial expected values of natural SLE data. In the second paper, a recursion is obtained for the same kind of expected values. The recursion is based on stationarity of the law of the whole SLE curve under a SLE induced flow. The third paper deals with one of the most central questions of the field and provides a framework of estimates for describing 2D scaling limits by SLE curves. In particular, it is shown that a weak estimate on the probability of an annulus crossing implies that a random curve arising from a statistical physics model will have scaling limits and those will be well-described by Loewner evolutions with random driving forces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The object of this dissertation is to study globally defined bounded p-harmonic functions on Cartan-Hadamard manifolds and Gromov hyperbolic metric measure spaces. Such functions are constructed by solving the so called Dirichlet problem at infinity. This problem is to find a p-harmonic function on the space that extends continuously to the boundary at inifinity and obtains given boundary values there. The dissertation consists of an overview and three published research articles. In the first article the Dirichlet problem at infinity is considered for more general A-harmonic functions on Cartan-Hadamard manifolds. In the special case of two dimensions the Dirichlet problem at infinity is solved by only assuming that the sectional curvature has a certain upper bound. A sharpness result is proved for this upper bound. In the second article the Dirichlet problem at infinity is solved for p-harmonic functions on Cartan-Hadamard manifolds under the assumption that the sectional curvature is bounded outside a compact set from above and from below by functions that depend on the distance to a fixed point. The curvature bounds allow examples of quadratic decay and examples of exponential growth. In the final article a generalization of the Dirichlet problem at infinity for p-harmonic functions is considered on Gromov hyperbolic metric measure spaces. Existence and uniqueness results are proved and Cartan-Hadamard manifolds are considered as an application.