889 resultados para Stochastic processes -- Mathematical models
Resumo:
Economic conditions around the world are likely to deteriorate in the short to medium term. The potential impact of this crisis on the spread of HIV is not clear. Government revenues and aid flows from international donors may face constraints, possibly leading to reductions in funding for HIV programs. Economic conditions (leading to increases in unemployment, for example) may also have an indirect impact on HIV epidemics by affecting the behaviour of individual people. Some behavioural changes may influence the rate of HIV transmission. This report presents findings from a study that investigates the potential impact of the economic crisis on HIV epidemics through the use of mathematical modelling. The potential epidemiological impacts of changes in the economy are explored for two distinctly characterised HIV epidemics: (i) a well-defined, established, and generalised HIV epidemic (specifically Cambodia, where incidence is declining); (ii) an HIV epidemic in its early expansion phase (specifically Papua New Guinea, where incidence has not yet peaked). Country-specific data are used for both settings and the models calibrated to accurately reflect the unique HIV epidemics in each population in terms of both incidence and prevalence. Models calibrated to describe the past and present epidemics are then used to forecast epidemic trajectories over the next few years under assumptions that behavioural or program conditions may change due to economic conditions. It should be noted that there are very limited solid data on how HIV/AIDS program funds may decrease or how social determinants related to HIV risk may change due to the economic crisis. Potential changes in key relevant factors were explored, along with sensitivity ranges around these assumptions, based on extensive discussions with in-country and international experts and stakeholders. As with all mathematical models, assumptions should be reviewed critically and results interpreted cautiously.
Resumo:
Many insect clades, especially within the Diptera (true flies), have been considered classically ‘Gondwanan’, with an inference that distributions derive from vicariance of the southern continents. Assessing the role that vicariance has played in the evolution of austral taxa requires testing the location and tempo of diversification and speciation against the well-established predictions of fragmentation of the ancient super-continent. Several early (anecdotal) hypotheses that current austral distributions originate from the breakup of Gondwana derive from studies of taxa within the family Chironomidae (non-biting midges). With the advent of molecular phylogenetics and biogeographic analytical software, these studies have been revisited and expanded to test such conclusions better. Here we studied the midge genus Stictocladius Edwards, from the subfamily Orthocladiinae, which contains austral-distributed clades that match vicariance-based expectations. We resolve several issues of systematic relationships among morphological species and reveal cryptic diversity within many taxa. Time-calibrated phylogenetic relationships among taxa accorded partially with the predicted tempo from geology. For these apparently vagile insects, vicariance-dated patterns persist for South America and Australia. However, as often found, divergence time estimates for New Zealand at c. 50 mya post-date separation of Zealandia from Antarctica and the remainder of Gondwana, but predate the proposed Oligocene ‘drowning’ of these islands. We detail other such ‘anomalous’ dates and suggest a single common explanation rather than stochastic processes. This could involve synchronous establishment following recovery from ‘drowning’ and/or deleteriously warming associated with the mid-Eocene climatic optimum (hence ‘waving’, which refers to cycles of drowning events) plus new availability of topography providing of cool running waters, or all these factors in combination. Alternatively a vicariance explanation remains available, given the uncertain duration of connectivity of Zealandia to Australia–Antarctic–South America via the Lord Howe and Norfolk ridges into the Eocene.
Resumo:
We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy. We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy.
Resumo:
Under certain conditions, the mathematical models governing the melting of nano-sized particles predict unphysical results, which suggests these models are incomplete. This thesis studies the addition of different physical effects to these models, using analytic and numerical techniques to obtain realistic and meaningful results. In particular, the mathematical "blow-up" of solutions to ill-posed Stefan problems is examined, and the regularisation of this blow-up via kinetic undercooling. Other effects such as surface tension, density change and size-dependent latent heat of fusion are also analysed.
Resumo:
There have been different approaches to studying penalty-kick performance in association football. In this paper, the authors synthesize key findings within an ecological dynamics theoretical framework. According to this theoretical perspective, information is the cornerstone for understanding the dynamics of action regulation in penalty-kick performance. Research suggests that investigators need to identify the information sources that are most relevant to penalty-kick performance. An important task is to understand how constraints can channel (i.e. change, emphasize or mask) information sources used to regulate upcoming actions and how the influence of these constraints is expressed in players' behavioural dynamics. Due to the broad range of constraints influencing penalty-kick performance, it is recommended that future research adopts an interdisciplinary focus on performance assessment to overcome the current lack of representativeness in penalty-kick experimental designs. Such an approach would serve to capture the information-based control of action of both players as components of this dyadic system in competitive sport.
Resumo:
Computational neuroscience aims to elucidate the mechanisms of neural information processing and population dynamics, through a methodology of incorporating biological data into complex mathematical models. Existing simulation environments model at a particular level of detail; none allow a multi-level approach to neural modelling. Moreover, most are not engineered to produce compute-efficient solutions, an important issue because sufficient processing power is a major impediment in the field. This project aims to apply modern software engineering techniques to create a flexible high performance neural modelling environment, which will allow rigorous exploration of model parameter effects, and modelling at multiple levels of abstraction.
Resumo:
One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.
Resumo:
This study developed a comprehensive research methodology for identification and quantification of sources responsible for pollutant build-up and wash-off from urban road surfaces. The study identified soil and asphalt wear, and non-combusted diesel fuel as the most influential sources for metal and hydrocarbon pollution respectively. The study also developed mathematical models to relate contributions from identified sources to underlying site specific factors such as land use and traffic. Developed mathematical model will play a key role in urban planning practices, enabling the implementation of effective water pollution control strategies.
Resumo:
Acid hydrolysis is a popular pretreatment for removing hemicellulose from lignocelluloses in order to produce a digestible substrate for enzymatic saccharification. In this work, a novel model for the dilute acid hydrolysis of hemicellulose within sugarcane bagasse is presented and calibrated against experimental oligomer profiles. The efficacy of mathematical models as hydrolysis yield predictors and as vehicles for investigating the mechanisms of acid hydrolysis is also examined. Experimental xylose, oligomer (degree of polymerisation 2 to 6) and furfural yield profiles were obtained for bagasse under dilute acid hydrolysis conditions at temperatures ranging from 110C to 170C. Population balance kinetics, diffusion and porosity evolution were incorporated into a mathematical model of the acid hydrolysis of sugarcane bagasse. This model was able to produce a good fit to experimental xylose yield data with only three unknown kinetic parameters ka, kb and kd. However, fitting this same model to an expanded data set of oligomeric and furfural yield profiles did not successfully reproduce the experimental results. It was found that a ``hard-to-hydrolyse'' parameter, $\alpha$, was required in the model to ensure reproducibility of the experimental oligomer profiles at 110C, 125C and 140C. The parameters obtained through the fitting exercises at lower temperatures were able to be used to predict the oligomer profiles at 155C and 170C with promising results. The interpretation of kinetic parameters obtained by fitting a model to only a single set of data may be ambiguous. Although these parameters may correctly reproduce the data, they may not be indicative of the actual rate parameters, unless some care has been taken to ensure that the model describes the true mechanisms of acid hydrolysis. It is possible to challenge the robustness of the model by expanding the experimental data set and hence limiting the parameter space for the fitting parameters. The novel combination of ``hard-to-hydrolyse'' and population balance dynamics in the model presented here appears to stand up to such rigorous fitting constraints.
Resumo:
In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ.
Resumo:
Pilot and industrial scale dilute acid pretreatment data can be difficult to obtain due to the significant infrastructure investment required. Consequently, models of dilute acid pretreatment by necessity use laboratory scale data to determine kinetic parameters and make predictions about optimal pretreatment conditions at larger scales. In order for these recommendations to be meaningful, the ability of laboratory scale models to predict pilot and industrial scale yields must be investigated. A mathematical model of the dilute acid pretreatment of sugarcane bagasse has previously been developed by the authors. This model was able to successfully reproduce the experimental yields of xylose and short chain xylooligomers obtained at the laboratory scale. In this paper, the ability of the model to reproduce pilot scale yield and composition data is examined. It was found that in general the model over predicted the pilot scale reactor yields by a significant margin. Models that appear very promising at the laboratory scale may have limitations when predicting yields on a pilot or industrial scale. It is difficult to comment whether there are any consistent trends in optimal operating conditions between reactor scale and laboratory scale hydrolysis due to the limited reactor datasets available. Further investigation is needed to determine whether the model has some efficacy when the kinetic parameters are re-evaluated by parameter fitting to reactor scale data, however, this requires the compilation of larger datasets. Alternatively, laboratory scale mathematical models may have enhanced utility for predicting larger scale reactor performance if bulk mass transport and fluid flow considerations are incorporated into the fibre scale equations. This work reinforces the need for appropriate attention to be paid to pilot scale experimental development when moving from laboratory to pilot and industrial scales for new technologies.
Resumo:
We develop a hybrid cellular automata model to describe the effect of the immune system and chemokines on a growing tumor. The hybrid cellular automata model consists of partial differential equations to model chemokine concentrations, and discrete cellular automata to model cell–cell interactions and changes. The computational implementation overlays these two components on the same spatial region. We present representative simulations of the model and show that increasing the number of immature dendritic cells (DCs) in the domain causes a decrease in the number of tumor cells. This result strongly supports the hypothesis that DCs can be used as a cancer treatment. Furthermore, we also use the hybrid cellular automata model to investigate the growth of a tumor in a number of computational “cancer patients.” Using these virtual patients, the model can explain that increasing the number of DCs in the domain causes longer “survival.” Not surprisingly, the model also reflects the fact that the parameter related to tumor division rate plays an important role in tumor metastasis.
Resumo:
This paper combines experimental data with simple mathematical models to investigate the influence of spray formulation type and leaf character (wettability) on shatter, bounce and adhesion of droplets impacting with cotton, rice and wheat leaves. Impaction criteria that allow for different angles of the leaf surface and the droplet impact trajectory are presented; their predictions are based on whether combinations of droplet size and velocity lie above or below bounce and shatter boundaries. In the experimental component, real leaves are used, with all their inherent natural variability. Further, commercial agricultural spray nozzles are employed, resulting in a range of droplet characteristics. Given this natural variability, there is broad agreement between the data and predictions. As predicted, the shatter of droplets was found to increase as droplet size and velocity increased, and the surface became harder to wet. Bouncing of droplets occurred most frequently on hard to wet surfaces with high surface tension mixtures. On the other hand, a number of small droplets with low impact velocity were observed to bounce when predicted to lie well within the adhering regime. We believe this discrepancy between the predictions and experimental data could be due to air layer effects that were not taken into account in the current bounce equations. Other discrepancies between experiment and theory are thought to be due to the current assumption of a dry impact surface, whereas, in practice, the leaf surfaces became increasingly covered with fluid throughout the spray test runs.
Resumo:
This project developed three mathematical models for scheduling ambulances and ambulance crews and proceeded to solve each model for test scenarios based on real data. Results from these models can serve as decision aids for dispatching or relocating ambulances; and for strategic decisions on the ambulance crews needed each shift. This thesis used Flexible Flow Shop Scheduling techniques to formulate strategic, dynamic and real time models. Metaheuristic solutions techniques were applied for a case study with realistic data. These models are suitable for ambulance planners and dispatchers.
Resumo:
This research investigates how to obtain accurate and reliable positioning results with global navigation satellite systems (GNSS). The work provides a theoretical framework for reliability control in GNSS carrier phase ambiguity resolution, which is the key technique for precise GNSS positioning in centimetre levels. The proposed approach includes identification and exclusion procedures of unreliable solutions and hypothesis tests, allowing the reliability of solutions to be controlled in the aspects of mathematical models, integer estimation and ambiguity acceptance tests. Extensive experimental results with both simulation and observed data sets effectively demonstrate the reliability performance characteristics based on the proposed theoretical framework and procedures.