999 resultados para Spin tunneling
Resumo:
In this paper, the excitation energy density dependence of carrier spin relaxation is studied at room temperature for the as-grown and annealed (Ga, Mn) As samples using femtosecond time-resolved pump-probe Kerr spectroscopy. It is found that spin relaxation lifetime of electrons lengthens with increasing excitation energy density for both samples, and the annealed ( Ga, Mn) As has shorter carrier recombination and electron spin relaxation lifetimes as well as larger Kerr rotation angle than the as-grown ( Ga. Mn) As under the same excitation condition. which shows that DP mechanism is dominant in the spin relaxation process for ( Ga, Mn)As at room temperature. The enhanced ultrafast Kerr effect in the annealed (Ga,Mn)As shows the potential application of the annealed ( Ga, Mn) As in ultrafast all-optical spin switches, and also provides a further evidence for the p-d exchange mechanism of the ferromagnetic origin of (Ga, Mn) As.
Resumo:
We theoretically investigate the Rashba spin-orbit interaction in InAs/GaSb quantum wells (QWs). We find that the Rashba spin-splitting (RSS) sensitively depends on the thickness of the InAs layer. The RSS exhibits nonlinear behavior for narrow InAs/GaSb QWs and the oscillating feature for wide InAs/GaSb QWs. The nonlinear and oscillating behaviors arise from the weakened and enhanced interband coupling. The RSS also show asymmetric features respect to the direction of the external electric field. (C) 2008 American Institute of Physics.
Resumo:
The Rashba spin splitting of the minibands of coupled InAs/GaAs pyramid quantum dots is investigated using the k center dot p method and valence force field model. The Rashba splitting of the two dimensional miniband in the lateral directions is found due to the structure inversion asymmetry in the vertical direction while the miniband in the vertical direction has no Rashba spin splitting. As the space between dots increases, the Rashba coefficients decrease and the conduction-band effective mass increases. This Rashba spin splitting of the minibands will significantly affect the spin transport properties between quantum dots. (C) 2008 American Institute of Physics.
Resumo:
We theoretically investigate the spin transport in two-terminal mesoscopic rings in the presence of both the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI). We find that the interplay between the RSOI and DSOI breaks the original cylindric symmetry of the mesoscopic rings and consequently leads to the anisotropic spin transport, i.e., the conductance is sensitive to the positions of the incoming and outgoing leads. The anisotropic spin transport can survive even in the presence of disorder caused by impurity elastic scattering in a realistic system.
Resumo:
The present paper is the reply to Sandu's Comment on our paper [Phys. Rev. B 72, 153314 (2005)], i.e., the effect of the current operator on the spin-dependent tunneling through a barrier in the presence of the Dresselhaus spin-orbit interaction (DSOI). We demonstrate theoretically and numerically that our previous numerical result is correct when there is no DSOI in the contact region and it remains a good approximation in the presence of the k(3)-DSOI in the contact regions.
Resumo:
We propose a spin current diode which can work even in a small applied bias condition (the linear-response regime). The prototypal device consists of a hornlike electron waveguide with Rashba spin-orbit interaction, which is connected to two leads with different widths. It is demonstrated that when electrons are incident from the narrow lead, the generated spin conductance fluctuates around a constant value in a wide range of incident energy. When the transport direction is reversed, the spin conductance is suppressed strongly. Such a remarkable difference arises from spin-flipped transitions caused by the spin-orbit interaction. (c) 2008 American Institute of Physics.
Resumo:
In this paper, a cellular neural network with depressing synapses for contrast-invariant pattern classification and synchrony detection is presented, starting from the impulse model of the single-electron tunneling junction. The results of the impulse model and the network are simulated using simulation program with integrated circuit emphasis (SPICE). It is demonstrated that depressing synapses should be an important candidate of robust systems since they exhibit a rapid depression of excitatory postsynaptic potentials for successive presynaptic spikes.
Resumo:
The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions.
Resumo:
Spin states and persistent currents are investigated theoretically in a quantum ring with an embedded magnetic ion under a uniform magnetic field including the spin-orbit interactions. The magnetic impurity acts as a spin-dependent delta-potential for electrons and results in gaps in the energy spectrum, consequently suppressing the oscillation of the persistent currents. The competition between the Zeeman splittings and the s-d exchange interaction leads to a transition of the electron ground state in the ring. The interplay between the periodic potential induced by the Rashba and Dresselhaus spin-orbit interactions and the delta-potential induced by the magnetic impurity leads to significant variation in the energy spectrum, charge density distribution, and persistent currents of electrons in the ring.
Resumo:
We have investigated the exciton spin relaxation in a GaInNAs/GaAs quantum well. The recombination from free and localized excitons is resolved on the basis of an analysis of the photoluminescence characteristics. The free exciton spin relaxation time is measured to be 192 ps at 10 K, while the localized exciton spin relaxation time is one order of magnitude longer than that of the free exciton. The dependence of the free exciton spin relaxation time on the temperature above 50 K suggests that both the D'yakonov-Perel' and the Elliot-Yafet effects dominate the spin relaxation process. The temperature independence below 50 K is considered to be due to the spin exchange interaction. The ultralong spin relaxation time of the localized excitons is explained to be due to the influence of nonradiative deep centers. (c) 2008 American Institute of Physics.
Resumo:
The electronic states of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells are investigated theoretically in the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling. The splits of electron energy levels are calculated. The results show that (1) the split energy of the excited state is larger than that of the ground state; (2) the split energy peak appears as the GaAs well width increases from zero; and (3) the maximum split energy reaches about 1.6 meV. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices. (c) 2008 American Institute of Physics.
Resumo:
The center-of-mass motion of quasi-two-dimensional excitons with spin-orbit coupling is calculated within the framework of effective mass theory. The results indicate that the spin-orbit coupling will induce a controllable bright-to-dark transition in a quasi-two-dimensional exciton system. This procedure can work as a way to increase the lifetime of excitons. (c) 2008 American Institute of Physics.
Resumo:
The hole-mediated ferromagnetism in (In,Mn)As quantum dots is investigated using the k center dot p method and the mean field model. It is found that the (In,Mn)As quantum dot can be ferromagnetic at room temperature when there is one hole in the dot. For the spherical quantum dots, the Curie temperature decreases as the diameter increases, and increases as the effective composition of magnetic ions increases. It is interesting to find that the (In,Mn)As oblate quantum dot has highly anisotropic Zeeman splitting and ferromagnetism due to the spin-orbit coupling effect, which can be used as an uniaxial spin amplifier. (c) 2008 American Institute of Physics.
Resumo:
The thermodynamic properties of the spin-1/2 diamond quantum Heisenberg chain model have been investigated by means of the transfer matrix renormalization group (TMRG) method. Considering different crystal structures, by changing the interactions among different spins and the external magnetic fields, we first investigate the magnetic susceptibility, magnetization, and specific heat of the distorted diamond chain as a model of ferrimagnetic spin systems. The susceptibility and the specific heat show different features for different ferromagnetic (F) and antiferromagnetic (AF) interactions and different magnetic fields. A 1/3 magnetization plateau is observed at low temperature in a magnetization curve. Then, we discuss the theoretical mechanism of the double-peak structure of the magnetic susceptibility and the three-peak structure of the specific heat of the compound Cu-3(CO3)(2)(OH)(2), on which an elegant measurement was performed by Kikuchi [Phys. Rev. Lett. 94, 227201 (2005)]. Our computed results are consistent with the main characteristics of the experimental data. Meanwhile, we find that the double-peak structure of susceptibility can be found in several different kinds of spin interactions in the diamond chain. Moreover, a three-peak behavior is observed in the TMRG results of magnetic susceptibility. In addition, we perform calculations relevant for some experiments and explain the characteristics of these materials. (c) 2007 American Institute of Physics.
Resumo:
We study the disentanglement evolution of two spin qubits which interact with a general XY spin-chain environment. The dynamical process of the disentanglement is numerically and analytically investigated in the vicinity of a quantum phase transition (QPT) of the spin chain in both weak and strong coupling cases. We find that the disentanglement of the two spin qubits may be greatly enhanced by the quantum critical behavior of the environmental spin chain. We give a detailed analysis to facilitate the understanding of the QPT-enhanced decaying behavior of the coherence factor. Furthermore, the scaling behavior in the disentanglement dynamics is also revealed and analyzed.