970 resultados para Spin Resonance Experiments
Resumo:
Purpose To investigate whether nonhemodynamic resonant saturation effects can be detected in patients with focal epilepsy by using a phase-cycled stimulus-induced rotary saturation (PC-SIRS) approach with spin-lock (SL) preparation and whether they colocalize with the seizure onset zone and surface interictal epileptiform discharges (IED). Materials and Methods The study was approved by the local ethics committee, and all subjects gave written informed consent. Eight patients with focal epilepsy undergoing presurgical surface and intracranial electroencephalography (EEG) underwent magnetic resonance (MR) imaging at 3 T with a whole-brain PC-SIRS imaging sequence with alternating SL-on and SL-off and two-dimensional echo-planar readout. The power of the SL radiofrequency pulse was set to 120 Hz to sensitize the sequence to high gamma oscillations present in epileptogenic tissue. Phase cycling was applied to capture distributed current orientations. Voxel-wise subtraction of SL-off from SL-on images enabled the separation of T2* effects from rotary saturation effects. The topography of PC-SIRS effects was compared with the seizure onset zone at intracranial EEG and with surface IED-related potentials. Bayesian statistics were used to test whether prior PC-SIRS information could improve IED source reconstruction. Results Nonhemodynamic resonant saturation effects ipsilateral to the seizure onset zone were detected in six of eight patients (concordance rate, 0.75; 95% confidence interval: 0.40, 0.94) by means of the PC-SIRS technique. They were concordant with IED surface negativity in seven of eight patients (0.88; 95% confidence interval: 0.51, 1.00). Including PC-SIRS as prior information improved the evidence of the standard EEG source models compared with the use of uninformed reconstructions (exceedance probability, 0.77 vs 0.12; Wilcoxon test of model evidence, P < .05). Nonhemodynamic resonant saturation effects resolved in patients with favorable postsurgical outcomes, but persisted in patients with postsurgical seizure recurrence. Conclusion Nonhemodynamic resonant saturation effects are detectable during interictal periods with the PC-SIRS approach in patients with epilepsy. The method may be useful for MR imaging-based detection of neuronal currents in a clinical environment. (©) RSNA, 2016 Online supplemental material is available for this article.
Resumo:
One and two spin systems are analyzed.
Resumo:
We present a combined magnetooptic and ferromagnetic resonance study of a series of arrays of single-crystalline Fe stripes fabricated by electron beam lithography on epitaxial Au(001)/Fe(001)/MgO(001) films grown by pulsed laser deposition. The analysis of the films revealed a clear fourfold magnetocrystalline anisotropy, with no significant presence of other anisotropy sources. The use of a large series of arrays, with stripe widths between 140 and 1000 nm and separation between them of either 200 nm or 500 nm, allowed studying their magnetization processes and resonance modes as well as the effects of the dipolar interactions on both. The magnetization processes of the stripes were interpreted in terms of a macrospin approximation, with a good agreement between experiments and calculations and negligible influence of the dipolar interactions. The ferromagnetic resonance spectra evidenced two types of resonances linked to bulk oscillation modes, essentially insensitive to the dipolar interactions, and a third one associated with edge-localized oscillations, whose resonance field is strongly dependent on the dipolar interactions. The ability to produce a high quality, controlled series of stripes provided a good opportunity to achieve an agreement between the experiments and calculations, carried out by taking into account just the Fe intrinsic properties and the morphology of the arrays, thus evidencing the relatively small role of other extrinsic factors.
Resumo:
Objective: To show the results of a device that generates automated olfactory stimuli suitable for functional magnetic resonance imaging (fMRI) experiments. Material and methods: Te n normal volunteers, 5 women and 5 men, were studied. The system allows the programming of several sequences, providing the capability to synchronise the onset of odour presentation with acquisition by a trigger signal of the MRI scanner. The olfactometer is a device that allows selection of the odour, the event paradigm, the time of stimuli and the odour concentration. The paradigm used during fMRI scanning consisted of 15-s blocks. The odorant event took 2 s with butanol, mint and coffee. Results: We observed olfactory activity in the olfactory bulb, entorhinal cortex (4%), amygdala (2.5%) and temporo-parietal cortex, especially in the areas related to emotional integration. Conclusions: The device has demonstrated its effectiveness in stimulating olfactory areas and its capacity to adapt to fMRI equipment.RESUMEN Objetivo: Mostrar los resultados del olfatómetro capaz de generar tareas olfativas en un equipo de resonancia magnética funcional (fMRI). Material y métodos: Estudiamos 10 sujetos normales: 5 varones y 5 mujeres. El olfatómetro está dise ̃ nado para que el estímulo que produce se sincronice con el equipo de fMRI mediante la se ̃ nal desencadenante que suministra el propio equipo. El olfatómetro es capaz de: selec- cionar el olor, secuenciar los distintos olores, programar la frecuencia y duración de los olores y controlar la intensidad del olor. El paradigma utilizado responde a un dise ̃ no de activación asociada a eventos, en el que la duración del bloque de activación y de reposo es de 15 s. La duración del estímulo olfativo (butanol, menta o café) es de 2 segundos, durante toda la serie que consta de 9 ciclos. Resultados: Se ha observado reactividad (contraste BOLD) en las diferentes áreas cerebrales involucradas en las tareas olfativas: bulbo olfatorio, córtex entorrinal (4%), amigdala (2,5%) y córtex temporoparietal. Las áreas relacionadas con integración de las emociones tienen una reactividad mayor. Conclusiones: El dispositivo propuesto nos permite controlar de forma automática y sincronizada los olores necesarios para estudiar la actividad de las áreas olfatorias cerebrales mediante fMRI.
Resumo:
We have used Mössbauer and electron paramagnetic resonance (EPR) spectroscopy to study a heme-N-alkylated derivative of chloroperoxidase (CPO) prepared by mechanism-based inactivation with allylbenzene and hydrogen peroxide. The freshly prepared inactivated enzyme (“green CPO”) displayed a nearly pure low-spin ferric EPR signal with g = 1.94, 2.15, 2.31. The Mössbauer spectrum of the same species recorded at 4.2 K showed magnetic hyperfine splittings, which could be simulated in terms of a spin Hamiltonian with a complete set of hyperfine parameters in the slow spin fluctuation limit. The EPR spectrum of green CPO was simulated using a three-term crystal field model including g-strain. The best-fit parameters implied a very strong octahedral field in which the three 2T2 levels of the (3d)5 configuration in green CPO were lowest in energy, followed by a quartet. In native CPO, the 6A1 states follow the 2T2 ground state doublet. The alkene-mediated inactivation of CPO is spontaneously reversible. Warming of a sample of green CPO to 22°C for increasing times before freezing revealed slow conversion of the novel EPR species to two further spin S = ½ ferric species. One of these species displayed g = 1.82, 2.25, 2.60 indistinguishable from native CPO. By subtracting spectral components due to native and green CPO, a third species with g = 1.86, 2.24, 2.50 could be generated. The EPR spectrum of this “quasi-native CPO,” which appears at intermediate times during the reactivation, was simulated using best-fit parameters similar to those used for native CPO.
Resumo:
Changes in metabolism and local circulation occur in the spinal cord during peripheral noxious stimulation. Evidence is presented that this stimulation also causes signal intensity alterations in functional magnetic resonance images of the spinal cord during formalin-induced pain. These results indicate the potential of functional magnetic resonance imaging in assessing noninvasively the extent and intensity of spinal cord excitation in this well characterized pain model. Therefore, the aim of this study was to establish functional magnetic resonance imaging as a noninvasive method to characterize temporal changes in the spinal cord after a single injection of 50 μl of formalin subcutaneously into the hindpaw of the anesthetized rat. This challenge produced a biphasic licking activity in the freely moving conscious animal. Images of the spinal cord were acquired within 2 min, enabling monitoring of the site and the temporal evolution of the signal changes during the development of formalin-induced hyperalgesia without the need of any surgical procedure. The time course of changes in the spinal cord functional image in the isoflurane-anesthetized animal was similar to that obtained from behavioral experiments. Also, comparable physiological data, control experiments, and the inhibition of a response through application of the local anesthetic agent lidocaine indicate that the signal changes observed after formalin injection were specifically related to excitability changes in the relevant segments of the lumbar spinal cord. This approach could be useful to characterize different models of pain and hyperalgesia and, more importantly, to evaluate effects of analgesic drugs.
Resumo:
The primary electron donor in bacterial reaction centers is a dimer of bacteriochlorophyll a molecules, labeled L or M based on their proximity to the symmetry-related protein subunits. The electronic structure of the bacteriochlorophyll dimer was probed by introducing small systematic variations in the bacteriochlorophyll–protein interactions by a series of site-directed mutations that replaced residue Leu M160 with histidine, tyrosine, glutamic acid, glutamine, aspartic acid, asparagine, lysine, and serine. The midpoint potentials for oxidation of the dimer in the mutants showed an almost continuous increase up to ≈60 mV compared with wild type. The spin density distribution of the unpaired electron in the cation radical state of the dimer was determined by electron–nuclear–nuclear triple resonance spectroscopy in solution. The ratio of the spin density on the L side of the dimer to the M side varied from ≈2:1 to ≈5:1 in the mutants compared with ≈2:1 for wild type. The correlation between the midpoint potential and spin density distribution was described using a simple molecular orbital model, in which the major effect of the mutations is assumed to be a change in the energy of the M half of the dimer, providing estimates for the coupling and energy levels of the orbitals in the dimer. These results demonstrate that the midpoint potential can be fine-tuned by electrostatic interactions with amino acids near the dimer and show that the properties of the electronic structure of a donor or acceptor in a protein complex can be directly related to functional properties such as the oxidation–reduction midpoint potential.
Resumo:
Solid-state nuclear magnetic resonance relaxation experiments were used to study the rigidity and spatial proximity of polymers in sugar beet (Beta vulgaris) cell walls. Proton T1ρ decay and cross-polarization patterns were consistent with the presence of rigid, crystalline cellulose microfibrils with a diameter of approximately 3 nm, mobile pectic galacturonans, and highly mobile arabinans. A direct-polarization, magic-angle-spinning spectrum recorded under conditions adapted to mobile polymers showed only the arabinans, which had a conformation similar to that of beet arabinans in solution. These cell walls contained very small amounts of hemicellulosic polymers such as xyloglucan, xylan, and mannan, and no arabinan or galacturonan fraction closely associated with cellulose microfibrils, as would be expected of hemicelluloses. Cellulose microfibrils in the beet cell walls were stable in the absence of any polysaccharide coating.
Resumo:
Previously we proposed that endogenous amphiphilic substances may partition from the aqueous cytoplasm into the lipid phase during dehydration of desiccation-tolerant organ(ism)s and vice versa during rehydration. Their perturbing presence in membranes could thus explain the transient leakage from imbibing organisms. To study the mechanism of this phenomenon, amphiphilic nitroxide spin probes were introduced into the pollen of a model organism, Typha latifolia, and their partitioning behavior during dehydration and rehydration was analyzed by electron paramagnetic resonance spectroscopy. In hydrated pollen the spin probes mainly occurred in the aqueous phase; during dehydration, however, the amphiphilic spin probes partitioned into the lipid phase and had disappeared from the aqueous phase below 0.4 g water g−1 dry weight. During rehydration the probes reappeared in the aqueous phase above 0.4 g water g−1 dry weight. The partitioning back into the cytoplasm coincided with the decrease of the initially high plasma membrane permeability. A charged polar spin probe was trapped in the cytoplasm during drying. Liposome experiments showed that partitioning of an amphiphilic spin probe into the bilayer during dehydration caused transient leakage during rehydration. This was also observed with endogenous amphipaths that were extracted from pollen, implying similar partitioning behavior. In view of the fluidizing effect on membranes and the antioxidant properties of many endogenous amphipaths, we suggest that partitioning with drying may be pivotal to desiccation tolerance, despite the risk of imbibitional leakage.
Resumo:
Site-directed chemical cleavage of lactose permease indicates that helix V is in close proximity to helices VII and VIII. To test this conclusion further, permease containing a biotin-acceptor domain and paired Cys residues at positions 148 (helix V) and 228 (helix VII), 148 and 226 (helix VII), or 148 and 275 (helix VIII) was affinity purified and labeled with a sulfhydryl-specific nitroxide spin label. Spin-spin interactions are observed with the 148/228 and 148/275 pairs, indicating close proximity between appropriate faces of helix V and helices VII and VIII. Little or no interaction is evident with the 148/226 pair, in all likelihood because position 226 is on the opposite face of helix VII from position 228. Broadening of the electron paramagnetic resonance spectra in the frozen state was used to estimate distance between the 148/228 and the 148/275 pairs. The nitroxides at positions 148 and 228 or 148 and 275 are within approximately 13-15 A. Finally, Cys residues at positions 148 and 228 are crosslinked by dibromobimane, a bifunctional crosslinker that is approximately 5 A. long, while no crosslinking is detected between Cys residues at positions 148 and 275 or 148 and 226. The results provide strong support for a structure in which helix V is in close proximity to both helices VII and VIII and is oriented in such a fashion that Cys-148 is closer to helix VII.
Resumo:
The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.
Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging.
Resumo:
The previously established cortical representation of rat whiskers in layer IV of the cortex contains distinct cylindrical columns of cellular aggregates, which are termed barrels and correlate in a one-to-one relation to whiskers on the contralateral rat face. In the present study, functional magnetic resonance imaging (fMRI) of the rat brain was used to map whisker barrel activation during mechanical up-down movement (+/- 2.5 mm amplitude at 8 Hz) of single/multiple whisker(s). Multislice gradient echo fMRI experiments were performed at 7 T with in-plane image resolution of 220 x 220 microns, slice thickness of 1 mm, and echo time of 16 ms. Highly significant (P < 0.001) and localized contralateral regions of activation were observed upon stimulation of single/multiple whisker(s). In all experiments (n = 10), the locations of activation relative to bregma and midline were highly correlated with the neuroanatomical position of the corresponding whisker barrels, and the results were reproducible intra- and interanimal. Our results indicate that fMRI based on blood oxygenation level-dependent image contrast has the sensitivity to depict activation of a single whisker barrel in the rat brain. This noninvasive technique will supplement existing methods in the study of rat barrel cortex and should be particularly useful for the long-term investigations of central nervous system in the same animal.
Resumo:
As shown in the accompanying paper, the magnetic dipolar interaction between site-directed metal-nitroxide pairs can be exploited to measure distances in T4 lysozyme, a protein of known structure. To evaluate this potentially powerful method for general use, particularly with membrane proteins that are difficult to crystallize, both a paramagnetic metal ion binding site and a nitroxide side chain were introduced at selected positions in the lactose permease of Escherichia coli, a paradigm for polytopic membrane proteins. Thus, three individual cysteine residues were introduced into putative helix IV of a lactose permease mutant devoid of native cysteine residues containing a high-affinity divalent metal ion binding site in the form of six contiguous histidine residues in the periplasmic loop between helices III and IV. In addition, the construct contained a biotin acceptor domain in the middle cytoplasmic loop to facilitate purification. After purification and spin labeling, electron paramagnetic resonance spectra were obtained with the purified proteins in the absence and presence of Cu(II). The results demonstrate that positions 103, 111, and 121 are 8, 14, and > 23 A from the metal binding site. These data are consistent with an alpha-helical conformation of transmembrane domain IV of the permease. Application of the technique to determine helix packing in lactose permease is discussed.