850 resultados para Specific exercise program
Resumo:
Field-Programmable Gate Arrays (FPGAs) are becoming increasingly important in embedded and high-performance computing systems. They allow performance levels close to the ones obtained with Application-Specific Integrated Circuits, while still keeping design and implementation flexibility. However, to efficiently program FPGAs, one needs the expertise of hardware developers in order to master hardware description languages (HDLs) such as VHDL or Verilog. Attempts to furnish a high-level compilation flow (e.g., from C programs) still have to address open issues before broader efficient results can be obtained. Bearing in mind an FPGA available resources, it has been developed LALP (Language for Aggressive Loop Pipelining), a novel language to program FPGA-based accelerators, and its compilation framework, including mapping capabilities. The main ideas behind LALP are to provide a higher abstraction level than HDLs, to exploit the intrinsic parallelism of hardware resources, and to allow the programmer to control execution stages whenever the compiler techniques are unable to generate efficient implementations. Those features are particularly useful to implement loop pipelining, a well regarded technique used to accelerate computations in several application domains. This paper describes LALP, and shows how it can be used to achieve high-performance computing solutions.
Resumo:
Abstract Background The mitochondrial DNA of kinetoplastid flagellates is distinctive in the eukaryotic world due to its massive size, complex form and large sequence content. Comprised of catenated maxicircles that contain rRNA and protein-coding genes and thousands of heterogeneous minicircles encoding small guide RNAs, the kinetoplast network has evolved along with an extreme form of mRNA processing in the form of uridine insertion and deletion RNA editing. Many maxicircle-encoded mRNAs cannot be translated without this post-transcriptional sequence modification. Results We present the complete sequence and annotation of the Trypanosoma cruzi maxicircles for the CL Brener and Esmeraldo strains. Gene order is syntenic with Trypanosoma brucei and Leishmania tarentolae maxicircles. The non-coding components have strain-specific repetitive regions and a variable region that is unique for each strain with the exception of a conserved sequence element that may serve as an origin of replication, but shows no sequence identity with L. tarentolae or T. brucei. Alternative assemblies of the variable region demonstrate intra-strain heterogeneity of the maxicircle population. The extent of mRNA editing required for particular genes approximates that seen in T. brucei. Extensively edited genes were more divergent among the genera than non-edited and rRNA genes. Esmeraldo contains a unique 236-bp deletion that removes the 5'-ends of ND4 and CR4 and the intergenic region. Esmeraldo shows additional insertions and deletions outside of areas edited in other species in ND5, MURF1, and MURF2, while CL Brener has a distinct insertion in MURF2. Conclusion The CL Brener and Esmeraldo maxicircles represent two of three previously defined maxicircle clades and promise utility as taxonomic markers. Restoration of the disrupted reading frames might be accomplished by strain-specific RNA editing. Elements in the non-coding region may be important for replication, transcription, and anchoring of the maxicircle within the kinetoplast network.
Resumo:
Health safety during trips is based on previous counseling, vaccination and prevention of infections, previous diseases or specific problems related to the destination. Our aim was to assess two aspects, incidence of health problems related to travel and the traveler’s awareness of health safety. To this end we phone-interviewed faculty members of a large public University, randomly selected from humanities, engineering and health schools. Out of 520 attempts, we were able to contact 67 (12.9%) and 46 (68.6%) agreed to participate in the study. There was a large male proportion (37/44, 84.1%), mature adults mostly in their forties and fifties (32/44, 72.7%), all of them with higher education, as you would expect of faculty members. Most described themselves as being sedentary or as taking occasional exercise, with only 15.9% (7/44) taking regular exercise. Preexisting diseases were reported by 15 travelers. Most trips lasted usually one week or less. Duration of the travel was related to the destination, with (12h) or longer trips being taken by 68.2% (30/44) of travelers, and the others taking shorter (3h) domestic trips. Most travelling was made by air (41/44) and only 31.8% (14/44) of the trips were motivated by leisure. Field research trips were not reported. Specific health counseling previous to travel was reported only by two (4.5%). Twenty seven of them (61.4%) reported updated immunization, but 11/30 reported unchecked immunizations. 30% (9/30) reported travel without any health insurance coverage. As a whole group, 6 (13.6%) travelers reported at least one health problem attributed to the trip. All of them were males travelling abroad. Five presented respiratory infections, such as influenza and common cold, one neurological, one orthopedic, one social and one hypertension. There were no gender differences regarding age groups, destination, type of transport, previous health counseling, leisure travel motivation or pre-existing diseases. Interestingly, the two cases of previous health counseling were made by domestic travelers. Our data clearly shows that despite a significant number of travel related health problems, these highly educated faculty members, had a low awareness of those risks, and a significant number of travels are made without prior counseling or health insurance. A counseling program conducted by a tourism and health professional must be implemented for faculty members in order to increase the awareness of travel related health problems.
Resumo:
Background Oral clefts are one of the most common birth defects with significant medical, psychosocial, and economic ramifications. Oral clefts have a complex etiology with genetic and environmental risk factors. There are suggestive results for decreased risks of cleft occurrence and recurrence with folic acid supplements taken at preconception and during pregnancy with a stronger evidence for higher than lower doses in preventing recurrence. Yet previous studies have suffered from considerable design limitations particularly non-randomization into treatment. There is also well-documented effectiveness for folic acid in preventing neural tube defect occurrence at 0.4 mg and recurrence with 4 mg. Given the substantial burden of clefting on the individual and the family and the supportive data for the effectiveness of folic acid supplementation as well as its low cost, a randomized clinical trial of the effectiveness of high versus low dose folic acid for prevention of cleft recurrence is warranted. Methods/design This study will assess the effect of 4 mg and 0.4 mg doses of folic acid, taken on a daily basis during preconception and up to 3 months of pregnancy by women who are at risk of having a child with nonsyndromic cleft lip with/without palate (NSCL/P), on the recurrence of NSCL/P. The total sample will include about 6,000 women (that either have NSCL/P or that have at least one child with NSCL/P) randomly assigned to the 4 mg and the 0.4 mg folic acid study groups. The study will also compare the recurrence rates of NSCL/P in the total sample of subjects, as well as the two study groups (4mg, 0.4 mg) to that of a historical control group. The study has been approved by IRBs (ethics committees) of all involved sites. Results will be disseminated through publications and presentations at scientific meetings. Discussion The costs related to oral clefts are high, including long term psychological and socio-economic effects. This study provides an opportunity for huge savings in not only money but the overall quality of life. This may help establish more specific clinical guidelines for oral cleft prevention so that the intervention can be better tailored for at-risk women. ClinicalTrials.gov Identifier NCT00397917
Resumo:
Abstract Background Low back pain is a relevant public health problem, being an important cause of work absenteeism worldwide, as well as affecting the quality of life of sufferers and their individual functional performances. Supervised active physical routines and of cognitive-behavioral therapies are recommended for the treatment of chronic Low back pain, although evidence to support the effectiveness of different techniques is missing. Accordingly, the aim of this study is to contrast the effectiveness of two types of exercises, graded activity or supervised, in decreasing symptoms of chronic low back pain. Methods/design Sample will consist of 66 patients, blindly allocated into one of two groups: 1) Graded activity which, based on an operant approach, will use time-contingent methods aiming to increase participants’ activity levels; 2) Supervised exercise, where participants will be trained for strengthening, stretching, and motor control targeting different muscle groups. Interventions will last one hour, and will happen twice a week for 6 weeks. Outcomes (pain, disability, quality of life, global perceived effect, return to work, physical activity, physical capacity, and kinesiophobia) will be assessed at baseline, at treatment end, and three and six months after treatment end. Data collection will be conducted by an investigator blinded to treatment allocation. Discussion This project describes the randomisation method that will be used to compare the effectiveness of two different treatments for chronic low back pain: graded activity and supervised exercises. Since optimal approach for patients with chronic back pain have yet not been defined based on evidence, good quality studies on the subject are necessary. Trial registration NCT01719276
Resumo:
Abstract Background An estimated 10–20 million individuals are infected with the retrovirus human T-cell leukemia virus type 1 (HTLV-1). While the majority of these individuals remain asymptomatic, 0.3-4% develop a neurodegenerative inflammatory disease, termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP results in the progressive demyelination of the central nervous system and is a differential diagnosis of multiple sclerosis (MS). The etiology of HAM/TSP is unclear, but evidence points to a role for CNS-inflitrating T-cells in pathogenesis. Recently, the HTLV-1-Tax protein has been shown to induce transcription of the human endogenous retrovirus (HERV) families W, H and K. Intriguingly, numerous studies have implicated these same HERV families in MS, though this association remains controversial. Results Here, we explore the hypothesis that HTLV-1-infection results in the induction of HERV antigen expression and the elicitation of HERV-specific T-cells responses which, in turn, may be reactive against neurons and other tissues. PBMC from 15 HTLV-1-infected subjects, 5 of whom presented with HAM/TSP, were comprehensively screened for T-cell responses to overlapping peptides spanning HERV-K(HML-2) Gag and Env. In addition, we screened for responses to peptides derived from diverse HERV families, selected based on predicted binding to predicted optimal epitopes. We observed a lack of responses to each of these peptide sets. Conclusions Thus, although the limited scope of our screening prevents us from conclusively disproving our hypothesis, the current study does not provide data supporting a role for HERV-specific T-cell responses in HTLV-1 associated immunopathology.
Resumo:
Objectives The current study investigated to what extent task-specific practice can help reduce the adverse effects of high-pressure on performance in a simulated penalty kick task. Based on the assumption that practice attenuates the required attentional resources, it was hypothesized that task-specific practice would enhance resilience against high-pressure. Method Participants practiced a simulated penalty kick in which they had to move a lever to the side opposite to the goalkeeper's dive. The goalkeeper moved at different times before ball-contact. Design Before and after task-specific practice, participants were tested on the same task both under low- and high-pressure conditions. Results Before practice, performance of all participants worsened under high-pressure; however, whereas one group of participants merely required more time to correctly respond to the goalkeeper movement and showed a typical logistic relation between the percentage of correct responses and the time available to respond, a second group of participants showed a linear relationship between the percentage of correct responses and the time available to respond. This implies that they tended to make systematic errors for the shortest times available. Practice eliminated the debilitating effects of high-pressure in the former group, whereas in the latter group high-pressure continued to negatively affect performance. Conclusions Task-specific practice increased resilience to high-pressure. However, the effect was a function of how participants responded initially to high-pressure, that is, prior to practice. The results are discussed within the framework of attentional control theory (ACT).
Resumo:
This thesis intends to investigate two aspects of Constraint Handling Rules (CHR). It proposes a compositional semantics and a technique for program transformation. CHR is a concurrent committed-choice constraint logic programming language consisting of guarded rules, which transform multi-sets of atomic formulas (constraints) into simpler ones until exhaustion [Frü06] and it belongs to the declarative languages family. It was initially designed for writing constraint solvers but it has recently also proven to be a general purpose language, being as it is Turing equivalent [SSD05a]. Compositionality is the first CHR aspect to be considered. A trace based compositional semantics for CHR was previously defined in [DGM05]. The reference operational semantics for such a compositional model was the original operational semantics for CHR which, due to the propagation rule, admits trivial non-termination. In this thesis we extend the work of [DGM05] by introducing a more refined trace based compositional semantics which also includes the history. The use of history is a well-known technique in CHR which permits us to trace the application of propagation rules and consequently it permits trivial non-termination avoidance [Abd97, DSGdlBH04]. Naturally, the reference operational semantics, of our new compositional one, uses history to avoid trivial non-termination too. Program transformation is the second CHR aspect to be considered, with particular regard to the unfolding technique. Said technique is an appealing approach which allows us to optimize a given program and in more detail to improve run-time efficiency or spaceconsumption. Essentially it consists of a sequence of syntactic program manipulations which preserve a kind of semantic equivalence called qualified answer [Frü98], between the original program and the transformed ones. The unfolding technique is one of the basic operations which is used by most program transformation systems. It consists in the replacement of a procedure-call by its definition. In CHR every conjunction of constraints can be considered as a procedure-call, every CHR rule can be considered as a procedure and the body of said rule represents the definition of the call. While there is a large body of literature on transformation and unfolding of sequential programs, very few papers have addressed this issue for concurrent languages. We define an unfolding rule, show its correctness and discuss some conditions in which it can be used to delete an unfolded rule while preserving the meaning of the original program. Finally, confluence and termination maintenance between the original and transformed programs are shown. This thesis is organized in the following manner. Chapter 1 gives some general notion about CHR. Section 1.1 outlines the history of programming languages with particular attention to CHR and related languages. Then, Section 1.2 introduces CHR using examples. Section 1.3 gives some preliminaries which will be used during the thesis. Subsequentely, Section 1.4 introduces the syntax and the operational and declarative semantics for the first CHR language proposed. Finally, the methodologies to solve the problem of trivial non-termination related to propagation rules are discussed in Section 1.5. Chapter 2 introduces a compositional semantics for CHR where the propagation rules are considered. In particular, Section 2.1 contains the definition of the semantics. Hence, Section 2.2 presents the compositionality results. Afterwards Section 2.3 expounds upon the correctness results. Chapter 3 presents a particular program transformation known as unfolding. This transformation needs a particular syntax called annotated which is introduced in Section 3.1 and its related modified operational semantics !0t is presented in Section 3.2. Subsequently, Section 3.3 defines the unfolding rule and prove its correctness. Then, in Section 3.4 the problems related to the replacement of a rule by its unfolded version are discussed and this in turn gives a correctness condition which holds for a specific class of rules. Section 3.5 proves that confluence and termination are preserved by the program modifications introduced. Finally, Chapter 4 concludes by discussing related works and directions for future work.
Resumo:
Il primo studio ha verificato l'affidabilità del software Polimedicus e gli effetti indotti d'allenamento arobico all’intensità del FatMax. 16 soggetti sovrappeso, di circa 40-55anni, sono stati arruolati e sottoposti a un test incrementale fino a raggiungere un RER di 0,95, e da quel momento il carico è stato aumentato di 1 km/ h ogni minuto fino a esaurimento. Successivamente, è stato verificato se i valori estrapolati dal programma erano quelli che si possono verificare durante a un test a carico costante di 1ora. I soggetti dopo 8 settimane di allenamento hanno fatto un altro test incrementale. Il dati hanno mostrato che Polimedicus non è molto affidabile, soprattutto l'HR. Nel secondo studio è stato sviluppato un nuovo programma, Inca, ed i risultati sono stati confrontati con i dati ottenuti dal primo studio con Polimedicus. I risultati finali hanno mostrato che Inca è più affidabile. Nel terzo studio, abbiamo voluto verificare l'esattezza del calcolo del FatMax con Inca e il test FATmaxwork. 25 soggetti in sovrappeso, tra 40-55 anni, sono stati arruolati e sottoposti al FATmaxwork test. Successivamente, è stato verificato se i valori estrapolati da INCA erano quelli che possono verificarsi durante un carico di prova costante di un'ora. L'analisi ha mostrato una precisione del calcolo della FatMax durante il carico di lavoro. Conclusione: E’ emersa una certa difficoltà nel determinare questo parametro, sia per la variabilità inter-individuale che intra-individuale. In futuro bisognerà migliorare INCA per ottenere protocolli di allenamento ancora più validi.
Resumo:
Coupled-cluster theory in its single-reference formulation represents one of the most successful approaches in quantum chemistry for the description of atoms and molecules. To extend the applicability of single-reference coupled-cluster theory to systems with degenerate or near-degenerate electronic configurations, multireference coupled-cluster methods have been suggested. One of the most promising formulations of multireference coupled cluster theory is the state-specific variant suggested by Mukherjee and co-workers (Mk-MRCC). Unlike other multireference coupled-cluster approaches, Mk-MRCC is a size-extensive theory and results obtained so far indicate that it has the potential to develop to a standard tool for high-accuracy quantum-chemical treatments. This work deals with developments to overcome the limitations in the applicability of the Mk-MRCC method. Therefore, an efficient Mk-MRCC algorithm has been implemented in the CFOUR program package to perform energy calculations within the singles and doubles (Mk-MRCCSD) and singles, doubles, and triples (Mk-MRCCSDT) approximations. This implementation exploits the special structure of the Mk-MRCC working equations that allows to adapt existing efficient single-reference coupled-cluster codes. The algorithm has the correct computational scaling of d*N^6 for Mk-MRCCSD and d*N^8 for Mk-MRCCSDT, where N denotes the system size and d the number of reference determinants. For the determination of molecular properties as the equilibrium geometry, the theory of analytic first derivatives of the energy for the Mk-MRCC method has been developed using a Lagrange formalism. The Mk-MRCC gradients within the CCSD and CCSDT approximation have been implemented and their applicability has been demonstrated for various compounds such as 2,6-pyridyne, the 2,6-pyridyne cation, m-benzyne, ozone and cyclobutadiene. The development of analytic gradients for Mk-MRCC offers the possibility of routinely locating minima and transition states on the potential energy surface. It can be considered as a key step towards routine investigation of multireference systems and calculation of their properties. As the full inclusion of triple excitations in Mk-MRCC energy calculations is computational demanding, a parallel implementation is presented in order to circumvent limitations due to the required execution time. The proposed scheme is based on the adaption of a highly efficient serial Mk-MRCCSDT code by parallelizing the time-determining steps. A first application to 2,6-pyridyne is presented to demonstrate the efficiency of the current implementation.
Resumo:
Due to multiple immune evasion mechanisms of cancer cells, novel therapy approaches are required to overcome the limitations of existing immunotherapies. Bispecific antibodies are potent anti-cancer drugs, which redirect effector T cells for specific tumor cell lysis, thus enabling the patient’s immune system to fight cancer cells. The antibody format used in this proof of concept study–bispecific ideal monoclonal antibodies termed BiMAB–is a tailor-made recombinant protein, which consists of two fused scFv antibodies recognizing different antigens. Both are arranged in tandem on a single peptide chain and the individual variable binding domains are separated by special non-immunogenic linkers. The format is comprised of a scFv targeting CLDN18.2–a gastric cancer tumor associated antigen (TAA) –while the second specificity binds the CD3 epsilon (CD3ε) subunit of the T cell receptor (TCR) on T cells. For the first time, we compared in our IMAB362-based BiMAB setting, four different anti-CD3-scFvs, respectively derived from the mAbs TR66, CLB-T3, as well as the humanized and the murine variant of UCHT1. In addition, we investigated the impact of an N- versus a C-terminal location of the IMAB362-derived scFv and the anti-CD3-scFvs. Thus, nine CLDN18.2 specific BiMAB proteins were generated, of which all showed a remarkably high cytotoxicity towards CLDN18.2-positive tumor cells. Because of its promising effectiveness, 1BiMAB emerged as the BiMAB prototype. The selectivity of 1BiMAB for its TAA and CD3ε, with affinities in the nanomolar range, has been confirmed by in vitro assays. Its dual binding depends on the design of an N-terminally positioned IMAB362 scFv and the consecutive C-terminally positioned TR66 scFv. 1BiMAB provoked a concentration and target cell dependent T cell activation, proliferation, and upregulation of the cytolytic protein Granzyme B, as well as the consequent elimination of target cells. Our results demonstrate that 1BiMAB is able to activate T cells independent of elements that are usually involved in the T cell recognition program, like antigen presentation, MHC restriction, and co-stimulatory effector molecules. In the first in vivo studies using a subcutaneous xenogeneic tumor mouse model in immune incompetent NSG mice, we could prove a significant therapeutic effect of 1BiMAB with partial or complete tumor elimination. The initial in vitro RIBOMAB experiments correspondingly showed encouraging results. The electroporation of 1BiMAB IVT-RNA into target or effector cells was feasible, while the functionality of translated 1BiMAB was proven by induced T cell activation and target cell lysis. Accordingly, we could show that the in vitro RIBOMAB approach was applicable for all nine BiMABs, which proves the RIBOMAB concept. Thus, the CLDN18.2-BiMAB strategy offers great potential for the treatment of cancer. In the future, administered either as protein or as IVT-RNA, the BiMAB format will contribute towards finding solutions to raise and sustain tumor-specific cellular responses elicited by engaged and activated endogenous T cells. This will potentially enable us to overcome immune evasion mechanisms of tumor cells, consequently supporting current solid gastric cancer therapies.
Resumo:
The aim of this study was to assess the effects on exercise performance of supplementing a standard cardiac rehabilitation program with additional exercise programming compared to the standard cardiac rehabilitation program alone in elderly patients after heart surgery.
Resumo:
Altitude training has become very popular among athletes as a means to further increase exercise performance at sea level or to acclimatize to competition at altitude. Several approaches have evolved during the last few decades, with "live high-train low" and "live low-train high" being the most popular. This review focuses on functional, muscular, and practical aspects derived from extensive research on the "live low-train high" approach. According to this, subjects train in hypoxia but remain under normoxia for the rest of the time. It has been reasoned that exercising in hypoxia could increase the training stimulus. Hypoxia training studies published in the past have varied considerably in altitude (2300-5700 m) and training duration (10 days to 8 weeks) and the fitness of the subjects. The evidence from muscle structural, biochemical, and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available performance capacity data such as maximal oxygen uptake (Vo(2)max) and (maximal) power output, hypoxia as a supplement to training is not consistently found to be advantageous for performance at sea level. Stronger evidence exists for benefits of hypoxic training on performance at altitude. "Live low-train high" may thus be considered when altitude acclimatization is not an option. In addition, the complex pattern of gene expression adaptations induced by supplemental training in hypoxia, but not normoxia, suggest that muscle tissue specifically responds to hypoxia. Whether and to what degree these gene expression changes translate into significant changes in protein concentrations that are ultimately responsible for observable structural or functional phenotypes remains open. It is conceivable that the global functional markers such as Vo(2)max and (maximal) power output are too coarse to detect more subtle changes that might still be functionally relevant, at least to high-level athletes.
Resumo:
Metabolic stress is believed to constitute an important signal for training-induced adjustments of gene expression and oxidative capacity in skeletal muscle. We hypothesized that the effects of endurance training on expression of muscle-relevant transcripts and ultrastructure would be specifically modified by a hypoxia complement during exercise due to enhanced glycolytic strain. Endurance training of untrained male subjects in conditions of hypoxia increased subsarcolemmal mitochondrial density in the recruited vastus lateralis muscle and power output in hypoxia more than training in normoxia, i.e. 169 versus 91% and 10 versus 6%, respectively, and tended to differentially elevate sarcoplasmic volume density (42 versus 20%, P = 0.07). The hypoxia-specific ultrastructural adjustments with training corresponded to differential regulation of the muscle transcriptome by single and repeated exercise between both oxygenation conditions. Fine-tuning by exercise in hypoxia comprised gene ontologies connected to energy provision by glycolysis and fat metabolism in mitochondria, remodelling of capillaries and the extracellular matrix, and cell cycle regulation, but not fibre structure. In the untrained state, the transcriptome response during the first 24 h of recovery from a single exercise bout correlated positively with changes in arterial oxygen saturation during exercise and negatively with blood lactate. This correspondence was inverted in the trained state. The observations highlight that the expression response of myocellular energy pathways to endurance work is graded with regard to metabolic stress and the training state. The exposed mechanistic relationship implies that the altitude specificity of improvements in aerobic performance with a 'living low-training high' regime has a myocellular basis.
Resumo:
Activators of 5'-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-zeta; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-zeta, and RNA interference (RNAi)-mediated knockdown of PKC-zeta. In mice, muscle-specific aPKC (PKC-lambda) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[(3)H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. In marked contrast to AICAR and metformin, treadmill exercise-induced stimulation of 2-deoxyglucose/glucose uptake was not inhibited in aPKC-knockout mice. Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.