992 resultados para Solar flares
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
The surface solar radiation (SSR) is of great importance to bio-chemical cycle and life activities. However, it is impossible to observe SSR directly over large areas especially for rugged surfaces such as the Qinghai-Tibet Plateau. This paper presented an improved parameterized model for predicting all-sky global solar radiation on rugged surfaces using Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products and Digital Elevation Model (DEM). The global solar radiation was validated using 11 observations within the plateau. The correlation coefficients of daily data vary between 0.67-0.86, while those of the averages of 10-day data are between 0.79-0.97. The model indicates that the attenuation of SSR is mainly caused by cloud under cloudy sky, and terrain is an important factor influencing SSR over rugged surfaces under clear sky. A positive relationship can also be inferred between the SSR and slope. Compared with horizontal surfaces, the south-facing slope receives more radiation, followed by the west- and east-facing slopes with less SSR, and the SSR of the north-facing slope is the least.
Resumo:
This paper describes a new strategy to make a full solid-state, flexible, dye-sensitized solar cell (DSSC) based on novel ionic liquid gel, organic dye, ZnO nanoparticles and carbon nanotube (CNT) thin film stamped onto a polyethylene terephthalate (PET) substrate. The CNTs serve both as the charge collector and as scaffolds for the growth of ZnO nanoparticles, where the black dye molecules are anchored.
Resumo:
Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell(1) (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability(3).
Resumo:
We report a high molar extinction coefficient organic sensitizer for high efficiency dye-sensitized solar cells. In combination with a solvent-free ionic liquid electrolyte, we have demonstrated a similar to 7% cell showing an excellent stability measured under the thermal and light soaking dual stress. This is expected to have an important practical consequence on the production of flexible, low-cost, and lightweight DSC based on plastic matrix.
Resumo:
We report two new heteroleptic polypyridyl ruthenium complexes, coded C101 and C102, with high molar extinction coefficients by extending the pi-conjugation of spectator ligands, with a motivation to enhance the optical absorptivity of mesoporous titania film and charge collection yield in a dye-sensitized solar cell. On the basis of this C101 sensitizer, several DSC benchmarks measured under the air mass 1.5 global sunlight have been reached.
Resumo:
A heteroleptic polypyridyl ruthenium complex, cis-Ru(4,4'-bis(5-octylthieno[3,2-b]thiophen-2-yl)-2,2'-bipyridine)(4,4'-dicarboxyl-2,2'-bipyridine)(NCS) 2, with a high molar extinction coefficient of 20.5 x 10(3) M-1 cm(-1) at 553 nm has been synthesized and demonstrated as a highly efficient sensitizer for a dye-sensitized solar cell, giving a power conversion efficiency of 10.53% measured under an irradiation of air mass 1.5 global ( AM 1.5G) full sunlight.
Resumo:
Binary melts of S-ethyltetrahydrothiophenium iodide and dicyanoamide (or tricyanomethide) have been employed for dye-sensitized solar cells with high power conversion efficiencies up to 6.9% under the illumination of AM 1.5G full sunlight. We have further shown that the transport of triiodide in ionic liquids with high iodide concentration is viscosity-dependent in terms of a physical diffusion coupled bond exchange mechanism apart from the simple physical diffusion.
Resumo:
We report a high molar extinction coefficient heteroleptic polypyridyl ruthenium sensitizer, featuring an electron-rich 3,4-ethylenedioxythiophene unit in its ancillary ligand. A nanocrystalline titania film stained with this sensitizer shows an improved optical absorption, which is highly desirable for practical dye-sensitized solar cells with a thin photoactive layer, facilitating the efficient charge collection.
Resumo:
We report a high molar extinction coefficient metal-free sensitizer composed of a triarylamine donor in combination with the 2-(2,2'-bithiophen-5-yl)acrylonitrile conjugation unit and cyanoacrylic acid as an acceptor. In conjugation with a volatile acetonitrile-based electrolyte or a solvent-free ionic liquid electrolyte, we have fabricated efficient dye-sensitized solar cells showing a corresponding 7.5% or 6.1% efficiency measured under the air mass 1.5 global sunlight. The ionic liquid cell exhibits excellent stability during a 1000 h accelerated test under the light-soaking and thermal dual stress. Intensity-modulated photocurrent and photovolatge spectroscopies were employed along with the transient photoelectrical decay measurements to detail the electron transport in the mesoporous titania films filled with these two electrolytes.
Resumo:
A series of organic D-pi-A sensitizers composed of different triarylamine donors in conjugation with the thienothiophene unit and cyanoacrylic acid as an acceptor has been synthesized at a moderate yield. Through tuning the number of methoxy substituents on the triphenylamine donor, we have gradually red-shifted the absorption of sensitizers to enhance device efficiencies.