542 resultados para Skeletonema costatum
Resumo:
To understand the mechanisms that trigger changes in chlorophyll a and species composition in the phytoplankton of the surf-zone at Cassino Beach (RS), we performed two short nutrient-enrichment experiments (4–5 days each) during the summer and winter of 2010. Seawater was incubated under controlled conditions of temperature (summer 25± 3 °C, winter 18±1 °C), salinity (summer 28, winter 26) and irradiance (100 μmol m−2 s−1 ). Dissolved inorganic nutrients were added in various concentrations in the summer (silicate, Si; nitrate, N; phosphate, P) and winter (N, P) experiments. Samples were taken daily for cell counts and chlorophyll a analysis. In both experiments, chlorophyll a values and cell density showed a significant increase (mainly diatoms) in the treatments with nitrate addition, regardless of the proportion added. In the summer experiment, the largest chlorophyll a increase, approximately threefold (31.5 to 89.5 μg L−1 ), was observed in the NP treatment due to the growth of Asterionellopsis glacialis (Castracane) Round, Skeletonema tropicum Cleve, Thalassiosira sp. Cleve and Pseudo-nitzschia spp. Peragallo. The maximum growth was obtained in the SiNP treatment for S. tropicum (μ=0.7), Thalassiosira (μ= 1.9) and Pseudo-nitzschia (μ= 1.3) and in the SiN treatment for A. glacialis (μ= 1.0). In the winter experiment, the chlorophyll a content increased 4.2 and 5.5 times, respectively, in the N and NP treatments (maxima 38.8 μg L−1 and 31.5 μg L−1 ), where A. glacialis (μ= 1.7–1.9) and Cylindrotheca closterium (Ehrenberg) Reimann & J.C. Lewin (μ= 1.0–1.96) showed the highest amount of growth. These results indicate that nitrate is the most important nutrient controlling phytoplankton chlorophyll a at sandy Cassino Beach. However, the responses of different species to enrichment during the summer and winter indicated that other factors also played a role. A. glacialis, present during both seasons, presented the highest growth rate during the winter, whereas during the summer it was independent of nutrient enrichment but coincided with the lowest growth of S. tropicum. This finding suggested the occurrence of allelopathic interactions between these species. During the summer, multi-enrichment (SiNP) favoured the best growth of S. tropicum, Pseudo-nitzschia spp. and Thalassiosira sp. These results indicated that the phytoplankton composition and diversity in the surf zone of Cassino Beach are shaped by the availability of silicate and phosphorus as well as by the availability of nitrate.
Resumo:
Pollicipes pollicipes (Crustacea: Scalpelliformes) is a highly prized food in Portugal and Spain and con- sequently a species of considerable interest to aqua- culture. Surprisingly, however, larval culture conditions for this barnacle have not been opti- mized. This study investigated the effects of temper- ature, diet, photoperiod and salinity on the growth and survival of P. pollicipes larvae. Temperature had a significant effect on specific growth rate (2.6–5.9% total width per day, from 11 to 24°C), reducing mean development time to the cyprid from 25 days at 11 °C to 10 days at 24°C, although this was accompanied by a significant increase in mortality to over 90% above 22°C. Mid- range temperatures (15–20°C) maximized total survival (19–31% respectively). Algal diets of Tetra- selmis suecica, T. suecica/Skeletonema marinoi and S. marinoi/Isochrysis galbana did not affect specific growth rate significantly, but survival (on average 39% in 15 days) and the proportion of high-quality healthy cyprids was significantly higher on the lat- ter two diets (11–15% of initial number of larvae). Photoperiod did not significantly affect the survival, although specific growth rate was significantly higher at 24:0 and 16:8 L:D. Salinity (20– 40 g L 1 range) did not affect growth and survival significantly. The best growth and survival were accomplished using rearing temperatures of 15–20°C, daily feeding with T. suecica/S. marinoi or I. galbana/S. marinoi and a photoperiod of 24:0 L:D.