693 resultados para Skeletal muscle fatigue


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work investigated the role of the sympathetic nervous system (SINS) in the control of protein degradation in skeletal muscles from rats with streptozotocin (STZ)-induced diabetes. Diabetes (1, 3, and 5 days after STZ) induced a significant increase in the norepinephrine content of soleus and EDL muscles, but it did not affect plasma catecholamine levels. Chemical sympathectomy induced by guanethidine (100 mg/kg body weight, for 1 or 2 days) reduced muscle norepinephrine content to negligible levels (less than 5%), decreased plasma epinephrine concentration, and further increased the high rate of protein degradation in muscles from acutely diabetic rats. The rise in the rate of proteolysis (nmol.mg wet wt(-1).2h(-1)) in soleus from 1-day diabetic sympathectomized rats was associated with increased activities of lysosomal (0.127 +/- 0.008 vs. 0.086 +/- 0.013 in diabetic control) and ubiquitin (Ub)-proteasome-dependent proteolytic pathways (0.154 +/- 0,007 vs. 0.121 +/- 0.006 in diabetic control). Increases in Ca2+-depenclent (0.180 +/- 0.007 vs. 0.121 +/- 0.011 in diabetic control) and Ub-proteasome-dependent proteolytic systems (0.092 +/- 0.003 vs. 0.060 +/- 0.002 in diabetic control) were observed in EDL from 1-day diabetic sympathectomized rats. The lower phosphorylation levels of AKT and Foxo3a in EDL muscles from 3-day diabetic rats were further decreased by sympathectomy. The data suggest that the SNS exerts acute inhibitory control of skeletal muscle proteolysis during the early stages of diabetes in rats, probably involving the AKT/Foxo signaling pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Muscle degenerative diseases such as Duchenne Muscular Dystrophy are incurable and treatment options are still restrained. Understanding the mechanisms and factors responsible for muscle degeneration and regeneration will facilitate the development of novel therapeutics. Several recent studies have demonstrated that Galectin-1 (Gal-1), a carbohydrate-binding protein, induces myoblast differentiation and fusion in vitro, suggesting a potential role for this mammalian lectin in muscle regenerative processes in vivo. However, the expression and localization of Gal-1 in vivo during muscle injury and repair are unclear. We report the expression and localization of Gal-1 during degenerative-regenerative processes in vivo using two models of muscular dystrophy and muscle injury. Gal-1 expression increased significantly during muscle degeneration in the murine mdx and in the canine Golden Retriever Muscular Dystrophy animal models. Compulsory exercise of mdx mouse, which intensifies degeneration, also resulted in sustained Gal-1 levels. Furthermore, muscle injury of wild-type C57BL/6 mice, induced by BaCl(2) treatment, also resulted in a marked increase in Gal-1 levels. Increased Gal-1 levels appeared to localize both inside and outside the muscle fibers with significant extracellular Gal-1 colocalized with infiltrating CD45(+) leukocytes. By contrast, regenerating muscle tissue showed a marked decrease in Gal-1 to baseline levels. These results demonstrate significant regulation of Gal-1 expression in vivo and suggest a potential role for Gal-1 in muscle homeostasis and repair.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE. Surgical recession of an extraocular muscle (EOM) posterior to its original insertion is a common form of strabismus surgery, weakening the rotational force exerted by the muscle on the globe and improving eye alignment. The purpose of this study was to assess myosin heavy chain (MyHC) isoform expression and satellite cell activity as defined by Pax7 expression in recessed EOMs of adult rabbits compared with that in muscles tenotomized but not recessed and with that in normal control muscles. METHODS. The scleral insertion of the superior rectus muscle was detached and sutured either 7 mm posterior to its original insertion site (recession surgery) or at the same site (tenotomy). One day before euthanatization, the rabbits received bromodeoxyuridine (BrdU) injections. After 7 and 14 days, selected EOMs from both orbits were examined for changes in fast, slow, neonatal, and developmental MyHC isoform expression, Pax7 expression, and BrdU incorporation. RESULTS. Recession and tenotomy surgery resulted in similar changes in the surgical EOMs. These included a decreased proportion of fast MyHC myofibers, an increased proportion of slow MyHC myofibers, and increased BrdU-positive satellite cells. Similar changes were seen in the non-operated contralateral superior rectus muscles. The ipsilateral inferior rectus showed reciprocal changes to the surgical superior rectus muscles. CONCLUSIONS. The EOMs are extremely adaptive to changes induced by recession and tenotomy surgery, responding with modulations in fiber remodeling and myosin expression. These adaptive responses could be manipulated to improve surgical success rates. (Invest Ophthalmol Vis Sci. 2010;51:5646-5656) DOI:10.1167/iovs.10-5523

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe a functional and biochemical link between the myogenic activator MyoD, the deacetylase HDAC1, and the tumor suppressor pRb. Interaction of MyoD with HDAC1 in undifferentiated myoblasts mediates repression of muscle-specific gene expression. Prodifferentiation cues, mimicked by serum removal, induce both downregulation of HDAC1 protein and pRb hypophosphorylation. Dephosphorylation of pRb promotes the formation of pRb-HDAC1 complex in differentiated myotubes. pRb-HDAC1 association coincides with disassembling of MyoD-HDAC1 complex, transcriptional activation of muscle-restricted genes, and cellular differentiation of skeletal myoblasts. A single point mutation introduced in the HDAC1 binding domain of pRb compromises its ability to disrupt MyoD-HDAC1 interaction and to promote muscle gene expression. These results suggest that reduced expression of HDAC1 accompanied by its redistribution in alternative nuclear protein complexes is critical for terminal differentiation of skeletal muscle cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Skeletal muscle differentiation and the activation of muscle-specific gene expression are dependent on the concerted action of the MyoD family and the MADS protein, MEF2, which function in a cooperative manner. The steroid receptor coactivator SRC-2/GRIP-1/TIF-2, is necessary for skeletal muscle differentiation, and functions as a cofactor for the transcription factor, MEF2. SRC-P belongs to the SRC family of transcriptional coactivators/cofactors that also includes SRC-1 and SRC-3/RAC-3/ACTR/ AIB-1. In this study we demonstrate that SRC-P is essentially localized in the nucleus of proliferating myoblasts; however, weak (but notable) expression is observed in the cytoplasm. Differentiation induces a predominant localization of SRC-P to the nucleus; furthermore, the nuclear staining is progressively more localized to dot-like structures or nuclear bodies. MEF2 is primarily expressed in the nucleus, although we observed a mosaic or variegated expression pattern in myoblasts; however, in myotubes all nuclei express MEF2. GRIP-1 and MEF2 are coexpressed in the nucleus during skeletal muscle differentiation, consistent with the direct interaction of these proteins. Rhabdomyosarcoma (RMS) cells derived from malignant skeletal muscle tumors have been proposed to be deficient in cofactors. Alveolar RMS cells very weakly express the steroid receptor coactivator, SRC-P, in a diffuse nucleocytoplasmic staining pattern. MEF2 and the cofactors, SRC-1 and SRC-3 are abundantly expressed in alveolar and embryonal RMS cells; however, the staining is not localized to the nucleus. Furthermore, the subcellular localization and transcriptional activity of MEF2C and a MEF2-dependent reporter are compromised in alveolar RMS cells. In contrast, embryonal RMS cells express SRC-2 in the nucleus, and MEF2 shuttles from the cytoplasm to the nucleus after serum withdrawal. In conclusion, this study suggests that the steroid receptor coactivator SRC-P and MEF2 are localized to the nucleus during the differentiation process. In contrast, RMS cells display aberrant transcription factor SRC localization and expression, which may underlie certain features of the RMS phenotype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the repression mechanism involves direct interactions between MEF2 proteins and HDAC7 and is associated with the ability of MEF2 to interact with the N-terminal 121 amino acids of HDAC7 that encode repression domain 1. The MADS domain of MEF2 mediates the direct interaction of MEF2 with HDAC7, MEF2 inhibition by HDAC7 is dependent on the N-terminal repression domain and surprisingly does not involve the C-terminal deacetylase domain. HDAC7 interacts with CtBP and other class-I and -II HDACs suggesting that silencing of MEF2 activity involves corepressor recruitment. Furthermore, we show that induction of muscle differentiation by serum withdrawal leads to the translocation of HDAC7 from the nucleus into the cytoplasm. This work demonstrates that HDAC7 regulates the function of MEF2 proteins and suggests that this class-II HDAC regulates this important transcriptional (and pathophysiological) target in heart and muscle tissue. The nucleocytoplasmic trafficking of HDAC7 and other class-II HDACs during myogenesis provides an ideal mechanism for the regulation of HDAC targets during mammalian development and differentiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Performance in sprint exercise is determined by the ability to accelerate, the magnitude of maximal velocity and the ability to maintain velocity against the onset of fatigue. These factors are strongly influenced by metabolic and anthropometric components. Improved temporal sequencing of muscle activation and/or improved fast twitch fibre recruitment may contribute to superior sprint performance. Speed of impulse transmission along the motor axon may also have implications on sprint performance. Nerve conduction velocity (NCV) has been shown to increase in response to a period of sprint training. However, it is difficult to determine if increased NCV is likely to contribute to improved sprint performance. An increase in motoneuron excitability, as measured by the Hoffman reflex (H-reflex), has been reported to produce a more powerful muscular contraction, hence maximising motoneuron excitability would be expected to benefit sprint performance. Motoneuron excitability can be raised acutely by an appropriate stimulus with obvious implications for sprint performance. However, at rest reflex has been reported to be lower in athletes trained for explosive events compared with endurance-trained athletes. This may be caused by the relatively high, fast twitch fibre percentage and the consequent high activation thresholds of such motor units in power-trained populations. In contrast, stretch reflexes appear to be enhanced in sprint athletes possibly because of increased muscle spindle sensitivity as a result of sprint training. With muscle in a contracted state, however, there is evidence to suggest greater reflex potentiation among both sprint and resistance-trained populations compared with controls. Again this may be indicative of the predominant types of motor units in these populations, but may also mean an enhanced reflex contribution to force production during running in sprint-trained athletes. Fatigue of neural origin both during and following sprint exercise has implications with respect to optimising training frequency and volume. Research suggests athletes are unable to maintain maximal firing frequencies for the full duration of, for example, a 100m sprint. Fatigue after a single training session may also have a neural manifestation with some athletes unable to voluntarily fully activate muscle or experiencing stretch reflex inhibition after heavy training. This may occur in conjunction with muscle damage. Research investigating the neural influences on sprint performance is limited. Further longitudinal research is necessary to improve our understanding of neural factors that contribute to training-induced improvements in sprint performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The intrinsic laryngeal muscles display unique structural and functional characteristics that distinguish them from the skeletal muscle of the trunk and limbs. These features include relatively small muscle fibers, super-fast contraction speed, and fatigue resistance. The molecular basis of tissue-specific functions and other characteristics is differential gene expression. Accordingly, we have investigated the molecular basis of the functional specialization of the intrinsic laryngeal muscles by examining the expression of two key genes in the larynx, known to be important for skeletal muscle development and function: (a) the muscle regulatory factor, Myf-5, and (b) the superfast-contracting myosin heavy chain (EO-MyHC). We have found that the adult thyroarytenoid muscles express much higher levels of both Myf-5 and EO-MyHC messenger ribonucleic acid (mRNA), compared to lower hindlimb skeletal muscle where Myf-5 mRNA levels are very low and EO-MyHC is not detectable. These findings suggest that the unique functional characteristics of the intrinsic laryngeal muscles may be based in laryngeal muscle-specific gene expression directed by a unique combination of muscle regulatory factors. Such laryngeal muscle-specific genes may allow the future development of new treatments for laryngeal muscle dysfunction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Green-striped burrowing frog. Cyclorana alboguttata survives extended drought periods by burrowing underground and aestivating. These frogs remain immobile within cocoons of shed skin and Mucus during aestivation and emerge from their burrows upon heavy rains to feed and reproduce. Extended periods of immobilisation in mammals typically result in muscle atrophy and a decrease in muscle performance. We examined the effect of aestivation and hence prolonged immobilisation, on skeletal Muscle mass. in vitro muscle performance, and locomotor performance in C. alboguttata. Frogs were aestivated in soil for 3 months and were compared with control animals that remained active, were fed, and had a continual supply of water. Compared to the controls, the wet mass of the gastrocnemius. sartorius, gracilus major. semimembranosus. peroneus, extensor cruris, tibialis posticus and tibialis anticus longus of aestivators remained unchanged indicating no muscle atrophy. The in-vitro performance characteristics of the gastroenemius muscle were maintained and burst swimming speed Was Unaffected, requiring no recovery from the extended period of immobilisation associated with aestivation. This preservation of muscle size, contractile condition and locomotor performance through aestivation enables C. alboguttata to compress their life history into unpredictable windows of opportunity, whenever heavy rains occur.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prolonged muscle disuse in vertebrates can lead to a pathological change resulting in muscle wasting and a loss of muscle strength. In this paper, we review muscle disuse atrophy in the vertebrates and examine the factors that influence the magnitude of the atrophic response during extended periods of inactivity, both artificially imposed (e.g. limb immobilisation) and naturally occurring, such as the quiescence associated with dormancy (e.g. hibernation and aestivation). The severity of muscle atrophy is positively correlated with mass-specific metabolic rate, and the metabolic depression that occurs during dormancy would appear to have a protective role, reducing or preventing muscle atrophy despite periods of inactivity lasting 6-9 months. In the light of these findings, the role of reactive oxygen species and antioxidants during muscle disuse is emphasised.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The four known tropomyosin genes have highly conserved DNA and amino acid sequences, and at least 18 isoforms are generated by alternative RNA splicing in muscle and non-muscle cells. No rabbit tropomyosin nucleotide sequences are known, although protein sequences for alpha- and beta-tropomyosin expressed by rabbit skeletal muscle have been described. Subtractive hybridisation was used to select for genes differentially expressed in rabbit aortic smooth muscle cells (SMC), during the change in cell phenotype in primary culture that is characterised by a loss of cytoskeletal filaments and contractile proteins. This led to the cloning of a tropomyosin gene predominantly expressed in rabbit SMC during this change. The full-length cDNA clone, designated rabbit TM-beta, contains an open reading frame of 284 amino acids, 5' untranslated region (UTR) of I 17 base pairs and 3' UTR of 79 base pairs. It is closely related to the beta-gene isoforms in other species, with the highest homology in DNA and protein sequences to the human fibroblast isoform TM-1 (91.7% identity in 1035 bp and 93.3% identity in the entire 284 amino acid sequence of the protein), It differs from rabbit skeletal muscle P-tropomyosin (81.7% homology at the protein level) mainly in two regions at amino acids 189-213 and 258-283 suggesting alternative splicing of exons 6a for 6b and 9d for 9a. Since this TM-P gene was the only gene strongly enough expressed in SMC changing phenotype to be observed by the subtractive hybridisation screen, it likely plays a significant role in this process. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study was to determine whether or not losses of strength or endurance following eccentric and concentric exercise are associated with reduced excitation. The effects of eccentric and concentric work on maximal voluntary isometric contraction (MVC) and surface electromyogram (EMG) of the quadriceps were studied in 10 healthy male subjects following bench-stepping for 20 min with a constant leading leg. Prior to stepping and at 0, 0.25, 0.50, 0.75, 1, 3. 24 and 48 h afterwards the subjects performed a 30 s leg extension MVC with each leg during which the isometric force and the root mean square voltage of the EMG were recorded. In the eccentrically exercised muscles (ECC), MVC0-3 (force during the first 3 s of contraction) fen immediately after the bench-stepping exercise to 88 +/- 2% (mean SE) of the pre-exercise value and remained significantly lower than the concentrically exercised muscles (p < 0.05). The muscle weakness in the ECC could not be attributed to central fatigue as surface EMG amplitude at MVC0-3 increased during the recovery period. Muscle weakness after eccentric exercise appears to be due to contractile failure, which is not associated with a reduction in excitation as assessed by surface EMG. Muscular fatigue over 30 s did not change in the two muscle groups after exercise (p = 0.79), indicating that the ECC were weaker but not more fatiguable after exercise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In mammals, prolonged immobilization of the limbs can result in a loss of capillary tortuosity, resulting in skeletal muscle haemorrhaging if rapid remobilization is permitted. In this study, we examined the effect of 4 months' immobilization on semimembranosus capillary structure in the Green-striped burrowing frog, Cyclorana alboguttata. C alboguttata routinely aestivates as part of a physiological strategy to avoid desiccation in semi-arid environments and, in this capacity, the hindlimbs of C alboguttata are immobilized in a cocoon for months at a time. We found that 4 months' aestivation had no effect on three-dimensional capillary structure in the semimembranosus muscle and that capillary tortuosity is preserved in immobilized C. alboguttata. The preservation of capillary structure in the hindlimb muscles of C alboguttata in part accounts for their remarkable ability to emerge with a fully competent locomotor system after prolonged immobilization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background The reduction of exercise capacity because of fatigue and dyspnea in patients with heart failure can be improved with exercise training. We sought to examine the mechanisms of exercise training, as an adjunctive treatment strategy for patients with heart failure. Methods a reviewed the published data on the possible mechanisms of effect of exercise training in heart failure. Results Symptoms of heart failure may be explained on the basis of abnormal skeletal muscle perfusion and structure and endothelial function. Exercise training has been shown to engender changes in muscle structure and biochemistry and vascular function, although effects on cardiac function have not been detected uniformly and may require longer training periods. Conclusions A suitable, long-term program of exercise training may reverse unfavorable interactions among the heart, vessels, and skeletal muscles. These improvements may be preserved with an ongoing maintenance program.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract: Background: Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disease leading to sensory and motor polyneuropathies, and functional limitations. Liver transplantation is the only treatment for FAP, requiring medication that negatively affects bone and muscle metabolism. The aim of this study was to compare body composition, levels of specific strength, level of physical disability risk, and functional capacity of transplanted FAP patients (FAPTx) with a group of healthy individuals (CON). Methods: A group of patients with 48 FAPTx (28 men, 20 women) was compared with 24 CON individuals (14 men, 10 women). Body composition was assessed by dual-energy X-ray absorptiometry, and total skeletal muscle mass (TBSMM) and skeletal muscle index (SMI) were calculated. Handgrip strength was measured for both hands as was isometric strength of quadriceps. Muscle quality (MQ) was ascertained by the ratio of strength to muscle mass. Functional capacity was assessed by the six-minute walk test. Results: Patients with FAPTx had significantly lower functional capacity, weight, body mass index, total fat mass, TBSMM, SMI, lean mass, muscle strength, MQ, and bone mineral density. Conclusion: Patients with FAPTx appear to be at particularly high risk of functional disability, suggesting an important role for an early and appropriately designed rehabilitation program.