994 resultados para Size-at-maturity
Resumo:
Size-dependent elastic constants are investigated theoretically with reference to a nanoscale single-crystal thin film. A three-dimensional _3D_ model is presented with the relaxation on the surface of the nanofilm taken into consideration. The constitutive relation of the 3D model is derived by using the energy approach, and analytical expressions for the four nonzero elastic constants of the nanofilm are obtained. The size effects of the four elastic constants are then discussed, and the dependence of these elastic constants on the surface relaxation and the ambiguity in the definition of the thickness of the nanofilm are also analyzed. In addition, the elastic moduli of the nanofilm in two kinds of plane problem are obtained and discussed in the case of a special boundary condition.
Resumo:
Previous investigations have unveiled size effects in the strength of metallic foams under simple shear - the shear strength increases with diminishing specimen size, a phenomena similar to that shown by Fleck et al. (Acta Mat., 1994, Vol. 42, p. 475.) on the torsion tests of copper wires of various radii. In this study, experimental study of the constrained deformation of a foam layer sandwiched between two steel plates has been conducted. The sandwiched plates are subjected to combined shear and normal loading. It is found that measured yield loci of metallic foams in the normal and shear stress space corresponding to various foam layer thicknesses are self-similar in shape but their size increases as the foam layer thickness decreases. Moreover, the strains profiles across the foam layer thickness are parabolic instead of uniform; their values increase from the interfaces between the foam layer and the steel plates and reach their maximum in the middle of the foam layer, yielding boundary layers adjacent to the steel plates. In order to further explore the origin of observed size effects, micromechanics models have been developed, with the foam layer represented by regular and irregular honeycombs. Though the regular honeycomb model is seen to underestimate the size effects, the irregular honeycomb model faithfully captures the observed features of the constrained deformation of metallic foams.
Resumo:
The constrained deformation of an aluminium alloy foam sandwiched between steel substrates has been investigated. The sandwich plates are subjected to through-thickness shear and normal loading, and it is found that the face sheets constrain the foam against plastic deformation and result in a size effect: the yield strength increases with diminishing thickness of foam layer. The strain distribution across the foam core has been measured by a visual strain mapping technique, and a boundary layer of reduced straining was observed adjacent to the face sheets. The deformation response of the aluminium foam layer was modelled by the elastic-plastic finite element analysis of regular and irregular two dimensional honeycombs, bonded to rigid face sheets; in the simulations, the rotation of the boundary nodes of the cell-wall beam elements was set to zero to simulate full constraint from the rigid face sheets. It is found that the regular honeycomb under-estimates the size effect whereas the irregular honeycomb provides a faithful representation of both the observed size effect and the observed strain profile through the foam layer. Additionally, a compressible version of the Fleck-Hutchinson strain gradient theory was used to predict the size effect; by identifying the cell edge length as the relevant microstructural length scale the strain gradient model is able to reproduce the observed strain profiles across the layer and the thickness dependence of strength. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Tensile and compressive tests have been performed on centre-hole panels, made from three types of metallic foams and two polymeric foams. In compression, the foams fail in a ductile, notch-insensitive manner, in support of a "net section strength" criterion. In tension, a ductile-brittle transition is observed for some of the foams at sufficiently large specimen sizes: for a small hole diameter the net section strength criterion is obeyed, whereas for a large hole a local stress criterion applies and the net section strength is reduced. For a number of the foams, the panel size was not sufficiently large to observe this ductile-brittle switch in behaviour. The predictions of a cohesive zone model are compared with the measured strengths and are found to be in good agreement. © 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Nanoindentation experiments on Al/glass systems show that, as the indentation depth increases, the hardness decreases during a shallow indentation, and increases when the indenter tip approaches the film–substrate interface. We associate the rise in hardness during two stages with the strong strain gradient effects, the first stage is related with the small scale effects and the second stage with the strain gradient between the indenter and the hard substrate. Using the strain gradient theory proposed by Chen and Wang and the classical plasticity theory, the observed nanoindentation behavior is modeled and analyzed by means of the finite element method, and it is found that the classical plasticity cannot explain the experiment results but the strain gradient theory can describe the experiment data at both shallow and deep indentation depths very well. The results prove that both the strain gradient effects and substrate effects exist in the nanoindentation of the film–substrate system.
Resumo:
In the present research, the discrete dislocation theory is used to analyze the size effect phenomena for the MEMS devices undergoing micro-bending load. A consistent result with the experimental one in literature is obtained. In order to check the effectiveness to use the discrete dislocation theory in predicting the size effect, both the basic version theory and the updated one are adopted simultaneously. The normalized stress-strain relations of the material are obtained for different plate thickness or for different obstacle density. The prediction results are compared with experimental results.
Resumo:
Micro-indentation tests at scales of the order of sub-micron show that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. At the same time, at micron or sub-micron scale, another effect, which is referred to as the geometrical size effects such as crystal grain size effect, thin film thickness effect, etc., also influences the measured material hardness. However, the trends are at odds with the size-independence implied by the conventional elastic-plastic theory. In the present research, the strain gradient plasticity theory (Fleck and Hutchinson) is used to model the composition effects (size effect and geometrical effect) for polycrystal material and metal thin film/ceramic substrate systems when materials undergo micro-indenting. The phenomena of the "pile-up" and "sink-in" appeared in the indentation test for the polycrystal materials are also discussed. Meanwhile, the micro-indentation experiments for the polycrystal Al and for the Ti/Si_3N_4 thin film/substrate system are carried out. By comparing the theoretical predictions with experimental measurements, the values and the variation trends of the micro-scale parameter included in the strain gradient plasticity theory are predicted.
Resumo:
The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material, are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally, the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted.
Resumo:
Arrays of nanomagnets were fabricated out of Ni80Fe14Mo5 in the lateral size range 500-30nm and the thickness range 3-20nm. Elliptical, triangular, square, pentagonal and circular geometries were all considered. The magnetic properties of these nanomagnets were probed rapidly and non-invasively using a high sensitivity magneto-optical method.
Resumo:
Non-equilibrium molecular dynamics (NEMD) simulations are performed to calculate thermal conductivity. The environment-dependent interatomic potential (EDIP) potential on crystal silicon is adopted as a model system. The issues are related to nonlinear response, local thermal equilibrium and statistical averaging. The simulation results by non-equilibrium molecular dynamics show that the calculated thermal conductivity decreases almost linearly as the film thickness reduced at the nanometre scale. The effect of size on the thermal conductivity is also obtained by a theoretic analysis of the kinetic theory and formulas of the heat capacity. The analysis reveals that the contributions of phonon mean free path (MFP) and phonon number in a finite cell to thermal conductivity are very important.
Resumo:
It is shown that in a Karman vortex street flow, particle size influences the dilute particle dispersion. Together with an increase of the particle size, there is an emergence of a period-doubling bifurcation to a chaotic orbit, as well as a decrease of the corresponding basins of attraction. A crisis leads the attractor to escape from the central region of flow. In the motion of dilute particles, a drag term and gravity term dominate and result in a bifurcation phenomenon.
Resumo:
Deformation microstructures have been investigated in nanocrystalline (nc) Ni with grain sizes in the 50-100 nm range. It was found that deformation twinning started to occur in grains of similar to 90 nm, and its propensity increased with decreasing grain size. In most of the nc grains dislocations were observed as well, in the form of individual dislocations and dipoles. It is concluded that dislocation-mediated plasticity dominates for grain sizes in the upper half, i.e. 50-100 nm, of the nanocrystalline regime. (C) 2007 Published by Elsevier B.V.
Resumo:
Size-dependent elastic properties of Ni nanofilms are investigated by molecular dynamics ( MD) simulations with embedded atom method (EAM). The surface effects are considered by calculating the surface relaxation, surface energy, and surface stress. The Young's modulus and yield stress are obtained as functions of thickness and crystallographic orientation. It is shown that the surface relaxation has important effects on the the elastic properties at nanoscale. When the surface relaxation is outward, the Young's modulus decreases with the film thickness decreasing, and vice versa. The results also show that the yield stresses of the films increase with the films becoming thinner. With the thickness of the nanofilms decreasing, the surface effects on the elastic properties become dominant.
Resumo:
A theoretical model is presented to investigate the size-dependent elastic moduli of nanostructures with the effects of the surface relaxation surface energy taken into consideration. At nanoscale, due to the large ratios of the surface-to-volume, the surface effects, which include surface relaxation surface energy, etc., can play important roles. Thus, the elastic moduli of nanostructures become surface- and size-dependent. In the research, the three-dimensional continuum model of the nanofilm with the surface effects is investigated. The analytical expressions of five nonzero elastic moduli of the nanofilm are derived, and then the dependence of the elastic moduli is discussed on the surface effects and the characteristic dimensions of nanofilms.