947 resultados para Single magnetic atom


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear magnetic resonance (NMR) was successfully employed to test several protocols and ideas in quantum information science. In most of these implementations, the existence of entanglement was ruled out. This fact introduced concerns and questions about the quantum nature of such bench tests. In this paper, we address some issues related to the non-classical aspects of NMR systems. We discuss some experiments where the quantum aspects of this system are supported by quantum correlations of separable states. Such quantumness, beyond the entanglement-separability paradigm, is revealed via a departure between the quantum and the classical versions of information theory. In this scenario, the concept of quantum discord seems to play an important role. We also present an experimental implementation of an analogue of the single-photon Mach-Zehnder interferometer employing two nuclear spins to encode the interferometric paths. This experiment illustrates how non-classical correlations of separable states may be used to simulate quantum dynamics. The results obtained are completely equivalent to the optical scenario, where entanglement (between two field modes) may be present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition-metal (TM)-doped diluted magnetic oxides (DMOs) have attracted attention from both experimental and theoretical points of view due to their potential use in spintronics towards new nanostructured devices and new technologies. In the present work, we study the magnetic properties of Sn0.96TM0.04O2 and Sn0.96TM0.04O1.98(V (O))(0.02), where TM = Fe and Co, focusing in particular in the role played by the presence of O vacancies nearby the TM. The calculated total energy as a function of the total magnetic moment per cell shows a magnetic metastability, corresponding to a ground state, respectively, with 2 and 1 mu(B)/cell, for Fe and Co. Two metastable states, with 0 and 4 mu(B)/cell were found for Fe, and a single value, 3 mu(B)/cell, for Co. The spin-crossover energies (E (S)) were calculated. The values are E (S) (0/2) = 107 meV and E (S) (4/2) = 25 meV for Fe. For Co, E (S) (3/1) = 36 meV. By creating O vacancies close to the TM site, we show that the metastablity and E (S) change. For iron, a new state appears, and the state with zero magnetic moment disappears. The ground state is 4 mu(B)/cell instead of 2 mu(B)/cell, and the energy E (S) (2/4) is 30 meV. For cobalt, the ground state is then found with 3 mu(B)/cell and the metastable state with 1 mu(B)/cell. The spin-crossover energy E (S) (1/3) is 21 meV. Our results suggest that these materials may be used in devices for spintronic applications that require different magnetization states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The free-carrier absorption cross-section sigma of a magnetic colloid composed of magnetite nanoparticles dispersed in oil is obtained by using the Z-scan technique in different experimental conditions of the laser beam. We show that it is possible to obtain sigma with picosecond pulsed and millisecond chopped beams with pulse frequencies smaller than about 30 Hz. For higher pulse frequencies, the heating of the colloidal system triggers the appearance of the Soret effect. This effect artificially increases the value of sigma calculated from the experimental results. The limits of the different experimental setups are discussed. (C) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Conventional protocols of high-frequency repetitive transcranial magnetic stimulation (rTMS) delivered to M1 can produce analgesia. Theta burst stimulation (TBS), a novel rTMS paradigm, is thought to produce greater changes in M1 excitability than conventional protocols. After a preliminary experiment showing no analgesic effect of continuous or intermittent TBS trains (cTBS or iTBS) delivered to M1 as single procedures, we used TBS to prime a subsequent session of conventional 10?Hz-rTMS. Methods In 14 patients with chronic refractory neuropathic pain, navigated rTMS was targeted over M1 hand region, contralateral to painful side. Analgesic effects were daily assessed on a visual analogue scale for the week after each 10?Hz-rTMS session, preceded or not by TBS priming. In an additional experiment, the effects on cortical excitability parameters provided by single- and paired-pulse TMS paradigms were studied. Results Pain level was reduced after any type of rTMS procedure compared to baseline, but iTBS priming produced greater analgesia than the other protocols. Regarding motor cortex excitability changes, the analgesic effects were associated with an increase in intracortical inhibition, whatever the type of stimulation, primed or non-primed. Conclusions The present results show that the analgesic effects of conventional 10?Hz-rTMS delivered to M1 can be enhanced by TBS priming, at least using iTBS. Interestingly, the application of cTBS and iTBS did not produce opposite modulations, unlike previously reported in other systems. It remains to be determined whether the interest of TBS priming is to generate a simple additive effect or a more specific process of cortical plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical magnetoresistance of a two-dimensional electron gas constrained to non-planar topographies, in antidot lattices, and under the influence of tilted magnetic field in arbitrary direction is numerically studied. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic fabric and rock-magnetism studies were performed on the four units of the 578 +/- 3-Ma-old Piracaia pluton (NW of Sao Paulo State, southern Brazil). This intrusion is roughly elliptical (similar to 32 km(2)), composed of (i) coarse-grained monzodiorite (MZD-c), (ii) fine-grained monzodiorite (MZD-f), which is predominant in the pluton, (iii) monzonite heterogeneous (MZN-het), and (iv) quartz syenite (Qz-Sy). Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The two fabrics are coaxial. The parallelism between AMS and AARM tensors excludes the presence of a single domain (SD) effect on the AMS fabric of the units. Several rock-magnetism experiments performed in one specimen from each sampled units show that for all of them, the magnetic susceptibility and magnetic fabrics are carried by magnetite grains, which was also observed in the thin sections. Foliations and lineations in the units were successfully determined by applying magnetic methods. Most of the magnetic foliations are steeply dipping or vertical in all units and are roughly parallel to the foliation measured in the field and in the country rocks. In contrast, the magnetic lineations present mostly low plunges for the whole pluton. However, for eight sites, they are steep up to vertical. Thin-section analyses show that rocks from the Piracaia pluton were affected by the regional strain during and after emplacement since magmatic foliation evolves to solid-state fabric in the north of the pluton, indicating that magnetic fabrics in this area of the pluton are related to this strain. Otherwise, the lack of solid-state deformation at outcrop scale and in thin sections precludes deformation in the SW of the pluton. This evidence allows us to interpret the observed magnetic fabrics as primary in origin (magmatic) acquired when the rocks were solidified as a result of magma flow, in which steeply plunging magnetic lineation suggests that a feeder zone could underlie this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic properties of Mn nanostructures on the Fe(001) surface have been studied using the noncollinear first-principles real space-linear muffin-tin orbital-atomic sphere approximation method within density-functional theory. We have considered a variety of nanostructures such as adsorbed wires, pyramids, and flat and intermixed clusters of sizes varying from two to nine atoms. Our calculations of interatomic exchange interactions reveal the long-range nature of exchange interactions between Mn-Mn and Mn-Fe atoms. We have found that the strong dependence of these interactions on the local environment, the magnetic frustration, and the effect of spin-orbit coupling lead to the possibility of realizing complex noncollinear magnetic structures such as helical spin spiral and half-skyrmion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spin-1 anisotropic antiferromagnet NiCl2-4SC(NH2)(2) exhibits a field-induced quantum phase transition that is formally analogous to Bose-Einstein condensation. Here we present results of systematic high-field electron spin resonance (ESR) experimental and theoretical studies of this compound with a special emphasis on single-ion two-magnon bound states. In order to clarify some remaining discrepancies between theory and experiment, the frequency-field dependence of magnetic excitations in this material is reanalyzed. In particular, a more comprehensive interpretation of the experimental signature of single-ion two-magnon bound states is shown to be fully consistent with theoretical results. We also clarify the structure of the ESR spectrum in the so-called intermediate phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To assess the correlation between MRI findings of the pancreas with those of the heart and liver in patients with beta thalassemia; to compare the pancreas T2* MRI results with glucose and ferritin levels and labile plasma iron (LPI). Materials and methods: We retrospectively evaluated chronically transfused patients, testing glucose with enzymatic tests, serum ferritin with chemiluminescence, LPI with cellular fluorescence, and T2* MRI to assess iron content in the heart, liver, and pancreas. MRI results were compared with one another and with serum glucose, ferritin, and LPI. Liver iron concentration (LIC) was determined in 11 patients' liver biopsies by atomic absorption spectrometry. Results: 289 MRI studies were available from 115 patients during the period studied. 9.4% of patients had overt diabetes and an additional 16% of patients had impaired fasting glucose. Both pancreatic and cardiac R2* had predictive power (p < 0.0001) for identifying diabetes. Cardiac and pancreatic R2* were modestly correlated with one another (r(2) = 0.20, p < 0.0001). Both were weakly correlated with LIC (r(2) = 0.09, p < 0.0001 for both) and serum ferritin (r(2) = 0.14, p < 0.0001 and r(2) = 0.03, p < 0.02, respectively). None of the three served as a screening tool for single observations. There is a strong log-log, or power-law, relationship between ratio of signal intensity (SIR) values and pancreas R2* with an r(2) of 0.91. Conclusions: Pancreatic iron overload can be assessed by MRI, but siderosis in other organs did not correlate significantly with pancreatic hemosiderosis. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 degrees of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b = 47 degrees +/- 20 degrees, 25 degrees +/- 20 degrees. This direction is close to the direction of the ISMF that shapes the heliosphere, l, b = 33 degrees +/- 4 degrees, 55 degrees +/- 4 degrees, as traced by the center of the "Ribbon" of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l approximate to 0 degrees -> 80 degrees and b approximate to 0 degrees -> 30 degrees, where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of +/- 0 degrees.25 pc(-1). This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of +/- 23 degrees. The ordered component and standard relations between polarization, color excess, and H-o column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at +/- 975 angstrom does not appear to play a role in grain alignment for the low-density ISM studied here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how magnetic materials respond to rapidly varying magnetic fields, as in dynamic hysteresis loops, constitutes a complex and physically interesting problem. But in order to accomplish a thorough investigation, one must necessarily consider the effects of thermal fluctuations. Albeit being present in all real systems, these are seldom included in numerical studies. The notable exceptions are the Ising systems, which have been extensively studied in the past, but describe only one of the many mechanisms of magnetization reversal known to occur. In this paper we employ the Stochastic Landau-Lifshitz formalism to study high-frequency hysteresis loops of single-domain particles with uniaxial anisotropy at an arbitrary temperature. We show that in certain conditions the magnetic response may become predominantly out-of-phase and the loops may undergo a dynamic symmetry loss. This is found to be a direct consequence of the competing responses due to the thermal fluctuations and the gyroscopic motion of the magnetization. We have also found the magnetic behavior to be exceedingly sensitive to temperature variations, not only within the superparamagnetic-ferromagnetic transition range usually considered, but specially at even lower temperatures, where the bulk of interesting phenomena is seen to take place. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Carr-Purcell pulse sequence, with low refocusing flip angle, produces echoes midway between refocusing pulses that decay to a minimum value dependent on T*(2). When the refocusing flip angle was pi/2 (CP90) and tau > T*(2), the signal after the minimum value, increased to reach a steady-state free precession regime (SSFP), composed of a free induction decay signal after each pulse and an echo, before the next pulse. When tau < T*(2), the signal increased from the minimum value to the steady-state regime with a time constant (T*) = 2T(1)T(2)/(T-1 + T-2). identical to the time constant observed in the SSFP sequence, known as the continuous wave free precession (CWFP). The steady-state amplitude obtained with M-cp90 = M0T2/(T-1+T-2) was identical to CWFP. Therefore, this sequence was named CP-CWFP because it is a Carr-Purcell sequence that produces results similar to the CWFP. However, CP-CWFP is a better sequence for measuring the longitudinal and transverse relaxation times in single scan, when the sample exhibits T-1 similar to T-2. Therefore, this sequence can be a useful method in time domain NMR and can be widely used in the agriculture, food and petrochemical industries because those samples tend to have similar relaxation times in low magnetic fields. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results for longitudinal dynamic hysteresis in single domain particles with uniaxial anisotropy. The combined influence of temperature, field-sweeping frequency, and field amplitude is discussed in detail. A novel and efficient numerical method is proposed, based on the direct solution of the infinite hierarchy of differential recurrence relations obtained from averaging over the stochastic realizations of the magnetic Langevin equation. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676416]