982 resultados para Simulations, Quantum Models, Resonant Tunneling Diode
Resumo:
As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.
Resumo:
We consider an integrable Hamiltonian system generated by the resonant normal form in order to study a particular mechanism of tunneling. We isolated near doublets of energy corresponding to rotation tori of the classical dynamics counterpart and the degeneracies breakdown is attributed to rotation-rotation tunneling. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The main purpose of this work is to study the behaviour of Skovgaard`s [Skovgaard, I.M., 2001. Likelihood asymptotics. Scandinavian journal of Statistics 28, 3-32] adjusted likelihood ratio statistic in testing simple hypothesis in a new class of regression models proposed here. The proposed class of regression models considers Dirichlet distributed observations, and the parameters that index the Dirichlet distributions are related to covariates and unknown regression coefficients. This class is useful for modelling data consisting of multivariate positive observations summing to one and generalizes the beta regression model described in Vasconcellos and Cribari-Neto [Vasconcellos, K.L.P., Cribari-Neto, F., 2005. Improved maximum likelihood estimation in a new class of beta regression models. Brazilian journal of Probability and Statistics 19,13-31]. We show that, for our model, Skovgaard`s adjusted likelihood ratio statistics have a simple compact form that can be easily implemented in standard statistical software. The adjusted statistic is approximately chi-squared distributed with a high degree of accuracy. Some numerical simulations show that the modified test is more reliable in finite samples than the usual likelihood ratio procedure. An empirical application is also presented and discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper we obtain asymptotic expansions up to order n(-1/2) for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in exponential family nonlinear models (Cordeiro and Paula, 1989), under a sequence of Pitman alternatives. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters and for testing the dispersion parameter, thus generalising the results given in Cordeiro et al. (1994) and Ferrari et al. (1997). We also present Monte Carlo simulations in order to compare the finite-sample performance of these tests. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper studies a special class of vector smooth-transition autoregressive (VSTAR) models that contains common nonlinear features (CNFs), for which we proposed a triangular representation and developed a procedure of testing CNFs in a VSTAR model. We first test a unit root against a stable STAR process for each individual time series and then examine whether CNFs exist in the system by Lagrange Multiplier (LM) test if unit root is rejected in the first step. The LM test has standard Chi-squared asymptotic distribution. The critical values of our unit root tests and small-sample properties of the F form of our LM test are studied by Monte Carlo simulations. We illustrate how to test and model CNFs using the monthly growth of consumption and income data of United States (1985:1 to 2011:11).
Resumo:
Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.
Resumo:
A free-running, temperature stabilized diode laser has been injection-locked to an external cavity diode laser for use in cold Rydberg atom experiments. Cold rubidium atoms in a magneto-optical trap (MOT) are excited to Rydberg states using a 10 ns laser pulse. The Rydberg atoms spontaneously ionize due to dipole forces, and the collisional ionization dynamics are observed as a function of atom density and principal quantum number of the Rydberg state, n. The injection-locked diode laser will be used as a repumper in conjunction with a dark spontaneous-force optical trap (SPOT) to increase the Rydberg state density. We report on the design of the injection-locked laser system.
Resumo:
This study presents an approach to combine uncertainties of the hydrological model outputs predicted from a number of machine learning models. The machine learning based uncertainty prediction approach is very useful for estimation of hydrological models' uncertainty in particular hydro-metrological situation in real-time application [1]. In this approach the hydrological model realizations from Monte Carlo simulations are used to build different machine learning uncertainty models to predict uncertainty (quantiles of pdf) of the a deterministic output from hydrological model . Uncertainty models are trained using antecedent precipitation and streamflows as inputs. The trained models are then employed to predict the model output uncertainty which is specific for the new input data. We used three machine learning models namely artificial neural networks, model tree, locally weighted regression to predict output uncertainties. These three models produce similar verification results, which can be improved by merging their outputs dynamically. We propose an approach to form a committee of the three models to combine their outputs. The approach is applied to estimate uncertainty of streamflows simulation from a conceptual hydrological model in the Brue catchment in UK and the Bagmati catchment in Nepal. The verification results show that merged output is better than an individual model output. [1] D. L. Shrestha, N. Kayastha, and D. P. Solomatine, and R. Price. Encapsulation of parameteric uncertainty statistics by various predictive machine learning models: MLUE method, Journal of Hydroinformatic, in press, 2013.
Resumo:
Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The Örst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modiÖed information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of Ötted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy ñreaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.
Resumo:
This paper deals with the testing of autoregressive conditional duration (ACD) models by gauging the distance between the parametric density and hazard rate functions implied by the duration process and their non-parametric estimates. We derive the asymptotic justification using the functional delta method for fixed and gamma kernels, and then investigate the finite-sample properties through Monte Carlo simulations. Although our tests display some size distortion, bootstrapping suffices to correct the size without compromising their excellent power. We show the practical usefulness of such testing procedures for the estimation of intraday volatility patterns.
Resumo:
In this study, we verify the existence of predictability in the Brazilian equity market. Unlike other studies in the same sense, which evaluate original series for each stock, we evaluate synthetic series created on the basis of linear models of stocks. Following Burgess (1999), we use the “stepwise regression” model for the formation of models of each stock. We then use the variance ratio profile together with a Monte Carlo simulation for the selection of models with potential predictability. Unlike Burgess (1999), we carry out White’s Reality Check (2000) in order to verify the existence of positive returns for the period outside the sample. We use the strategies proposed by Sullivan, Timmermann & White (1999) and Hsu & Kuan (2005) amounting to 26,410 simulated strategies. Finally, using the bootstrap methodology, with 1,000 simulations, we find strong evidence of predictability in the models, including transaction costs.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian inflation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in different measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian in ation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in di¤erent measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
In a reccnt paper. Bai and Perron (1998) considcrccl theoretical issues relatec\ lo lhe limiting distriblltion of estimators and test. statist.ics in the linear model \\'ith multiplc struct ural changes. \Ve assess. via simulations, the adequacy of the \'arious I1Iethods suggested. These CO\'er the size and power of tests for structural changes. the cO\'erage rates of the confidence Íntervals for the break dates and the relat.Í\'e merits of methods to select the I1umber of breaks. The \'arious data generating processes considered alIo,,' for general conditions OIl the data and the errors including differellces across segmcll(s. Yarious practical recommendations are made.