929 resultados para Simplified design method
Resumo:
This article reports on the design and implementation of a Computer-Aided Die Design System (CADDS) for sheet-metal blanks. The system is designed by considering several factors, such as the complexity of blank geometry, reduction in scrap material, production requirements, availability of press equipment and standard parts, punch profile complexity, and tool elements manufacturing method. The interaction among these parameters and how they affect designers' decision patterns is described. The system is implemented by interfacing AutoCAD with the higher level languages FORTRAN 77 and AutoLISP. A database of standard die elements is created by parametric programming, which is an enhanced feature of AutoCAD. The greatest advantage achieved by the system is the rapid generation of the most efficient strip and die layouts, including information about the tool configuration.
Resumo:
Cold-formed steel lipped channels are commonly used in LSF wall construction as load bearing studs with plasterboards on both sides. Under fire conditions, cold-formed thin-walled steel sections heat up quickly resulting in fast reduction in their strength and stiffness. Usually the LSF wall panels are subjected to fire from one side which will cause thermal bowing, neutral axis shift and magnification effects due to the development of non-uniform temperature distributions across the stud. This will induce an additional bending moment in the stud and hence the studs in LSF wall panels should be designed as a beam column considering both the applied axial compression load and the additional bending moment. Traditionally the fire resistance rating of these wall panels is based on approximate prescriptive methods. Very often they are limited to standard wall configurations used by the industry. Therefore a detailed research study is needed to develop fire design rules to predict the failure load and hence the failure time of LSF wall panels subject to non-uniform temperature distributions. This paper presents the details of an investigation to develop suitable fire design rules for LSF wall studs under non-uniform elevated temperature distributions. Applications of the previously developed fire design rules based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 to LSF wall studs were investigated in detail and new simplified fire design rules based on AS/NZS 4600 and Eurocode 3 Part 1.3 were proposed in the current study with suitable allowances for the interaction effects of compression and bending actions. The accuracy of the proposed fire design rules was verified by using the results from full scale fire tests and extensive numerical studies.
Resumo:
Traditionally the fire resistance rating of LSF wall systems is based on approximate prescriptive methods developed using limited fire tests. Therefore a detailed research study into the performance of load bearing LSF wall systems under standard fire conditions was undertaken to develop improved fire design rules. It used the extensive fire performance results of eight different LSF wall systems from a series of full scale fire tests and numerical studies for this purpose. The use of previous fire design rules developed for LSF walls subjected to non-uniform elevated temperature distributions based on AISI design manual and Eurocode3 Parts 1.2 and 1.3 was investigated first. New simplified fire design rules based on AS/NZS 4600, North American Specification and Eurocode 3 Part 1.3 were then proposed in this study with suitable allowances for the interaction effects of compression and bending actions. The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the new design rules to predict the failure load ratio versus time and temperature curves for varying LSF wall configurations. The accuracy of the proposed design rules was verified using the test and FEA results for different wall configurations, steel grades, thicknesses and load ratios. This paper presents the details and results of this study including the improved fire design rules for predicting the load capacity of LSF wall studs and the failure times of LSF walls under standard fire conditions.
Resumo:
Understanding the effects of design interventions on the meanings people associate with landscapes is important to critical and ethical practice in landscape architecture. Case study research has become a common way researchers evaluate design interventions and related issues, with a standardised method promoted by the Landscape Architecture Foundation (LAF). However, the method is somewhat undeveloped for interpreting landscape meanings – something most commonly undertaken as historic landscape studies, but not as studies of design effect. This research proposes a new method for such interpretation, using a case study of Richard Haag’s radical 1971 proposal for a new kind of park on the site of the former Seattle gas works.
Resumo:
Although Design Science Research (DSR) is now an accepted approach to research in the Information Systems (IS) discipline, consensus on the methodology of DSR has yet to be achieved. Lack of a comprehensive and detailed methodology for Design Science Research (DSR) in the Information System (IS) discipline is a main issue. Prior research (the parent-study) aimed to remedy this situation and resulted in the DSR-Roadmap (Alturki et al., 2011a). Continuing empirical validation and revision of the DSR-Roadmap strives towards a methodology with appropriate levels of detail, integration, and completeness for novice researchers to efficiently and effectively conduct and report DSR in IS. The sub-study reported herein contributes to this larger, ongoing effort. This paper reports results from a formative evaluation effort of the DSR-Roadmap conducted using focus group analysis. Generally, participants endorsed the utility and intuitiveness of the DSR-Roadmap, while also suggesting valuable refinements. Both parent-study and sub-study make methodological contributions. The parent-study is the first attempt of utilizing DSR to develop a research methodology showing an example of how to use DSR in research methodology construction. The sub-study demonstrates the value of the focus group method in DSR for formative product evaluation.
Resumo:
Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A refined plastic hinge method suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in a companion paper. The method implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising non-compact sections is established in this paper by comparison with a comprehensive range of analytical benchmark frame solutions. The refined plastic hinge method is shown to be more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations.
Resumo:
The cities of Saudi Arabia have perhaps the largest growth rates of cities in the Middle East, such that it has become a cause in shortage of housing for mid and low-income families, as is the case in other developing countries. Even when housing is found, it is not sustainable nor is it providing the cultural needs of those families. The aim of this paper is to integrate the unique conservative Islamic Saudi culture into the design of sustainable housing. This paper is part of a preliminary study of an on-going PhD thesis, which utilises a semistructured interview of a panel of nine experts in collecting the data. The interviews consisted of ten questions ranging from general questions such as stating their expertise and work position to more specific question such as listing the critical success factors and/or barriers for applying sustainability to housing in Saudi Arabia. Since the participants were selected according to their experience, the answers to the interview questions were satisfactory where the generation of the survey questions for the second stage in the PhD thesis took place after analysing the participant’s answers to the interview questions. This paper recommends design requirements for accommodating the conservative Islamic Saudi Culture in low cost sustainable houses. Such requirements include achieving privacy through the use of various types of traditional Saudi architectural elements, such as the method of decorative screening of windows, called Mashrabiya, and having an inner courtyard where the house looks inward rather than outward. Other requirements include educating firms on how to design sustainable housing, educating the public on the advantages of sustainable housing and implementing new laws that enforce the utilisation of sustainable methods to housing construction. This paper contributes towards the body of knowledge by proposing initial findings on how to integrate the conservative Islamic culture of Saudi Arabia into the design of a sustainable house specifically for mid and low-income families. This contribution can be implemented on developing countries in the region that are faced with housing shortage for mid and low-income families.
Resumo:
The nature and characteristics of how learners learn today are changing. As technology use in learning and teaching continues to grow, its integration to facilitate deep learning and critical thinking becomes a primary consideration. The implications for learner use, implementation strategies, design of integration frameworks and evaluation of their effectiveness in learning environments cannot be overlooked. This study specifically looked at the impact that technology-enhanced learning environments have on different learners’ critical thinking in relation to eductive ability, technological self-efficacy, and approaches to learning and motivation in collaborative groups. These were explored within an instructional design framework called CoLeCTTE (collaborative learning and critical thinking in technology-enhanced environments) which was proposed, revised and used across three cases. The field of investigation was restricted to three key questions: 1) Do learner skill bases (learning approach and eductive ability) influence critical thinking within the proposed CoLeCTTE framework? If so, how?; 2) Do learning technologies influence the facilitation of deep learning and critical thinking within the proposed CoLeCTTE framework? If so, how?; and 3) How might learning be designed to facilitate the acquisition of deep learning and critical thinking within a technology-enabled collaborative environment? The rationale, assumptions and method of research for using a mixed method and naturalistic case study approach are discussed; and three cases are explored and analysed. The study was conducted at the tertiary level (undergraduate and postgraduate) where participants were engaged in critical technical discourse within their own disciplines. Group behaviour was observed and coded, attributes or skill bases were measured, and participants interviewed to acquire deeper insights into their experiences. A progressive case study approach was used, allowing case investigation to be implemented in a "ladder-like" manner. Cases 1 and 2 used the proposed CoLeCTTE framework with more in-depth analysis conducted for Case 2 resulting in a revision of the CoLeCTTE framework. Case 3 used the revised CoLeCTTE framework and in-depth analysis was conducted. The findings led to the final version of the framework. In Cases 1, 2 and 3, content analysis of group work was conducted to determine critical thinking performance. Thus, the researcher used three small groups where learner skill bases of eductive ability, technological self-efficacy, and approaches to learning and motivation were measured. Cases 2 and 3 participants were interviewed and observations provided more in-depth analysis. The main outcome of this study is analysis of the nature of critical thinking within collaborative groups and technology-enhanced environments positioned in a theoretical instructional design framework called CoLeCTTE. The findings of the study revealed the importance of the Achieving Motive dimension of a student’s learning approach and how direct intervention and strategies can positively influence critical thinking performance. The findings also identified factors that can adversely affect critical thinking performance and include poor learning skills, frustration, stress and poor self-confidence, prioritisations over learning; and inadequate appropriation of group role and tasks. These findings are set out as instructional design guidelines for the judicious integration of learning technologies into learning and teaching practice for higher education that will support deep learning and critical thinking in collaborative groups. These guidelines are presented in two key areas: technology and tools; and activity design, monitoring, control and feedback.
Resumo:
High power piezoelectric ultrasonic transducers have been widely exploited in a variety of applications. The critical behaviour of a piezoelectric device is encapsulated in its resonant frequencies because of its maximum transmission performance at these frequencies. Therefore power electronic converters should be tuned at those resonant frequencies to transfer electrical power to mechanical power efficiently. However, structural and environmental changes cause variations in the device resonant frequencies which can degrade the system performance. Hence, estimating the device resonant frequencies within the incorporated setup can significantly improve the system performance. This paper proposes an efficient resonant frequency estimation approach to maintain the performance of high power ultrasonic applications using the employed power converter. Experimental validations indicate the effectiveness of the proposed method.
Resumo:
Recent studies have started to explore context-awareness as a driver in the design of adaptable business processes. The emerging challenge of identifying and considering contextual drivers in the environment of a business process are well understood, however, typical methods and models for business process design do not yet consider this context. In this paper, we describe our work on the design of a method framework and appropriate models to enable a context-aware process design approach. We report on our ongoing work with an Australian insurance provider and describe the design science we employed to develop innovative and useful artifacts as part of a context-aware method framework. We discuss the utility of these artifacts in an application in the claims handling process at the case organization.
Resumo:
This paper presents a new simplified parametric analysis technique for the design of fuel cell and hybrid-electric vehicles. The technique utilizes a comprehensive set of ∼30 parameters to fully characterize the vehicle platform, powertrain components, vehicle performance requirements and driving conditions. It is best applied to the sizing of powertrain components and prediction of energy consumption in a vehicle. This new parametric technique makes a good complement to existing vehicle simulation software packages and therefore represents a potentially valuable tool for the hybrid vehicle designer.
Resumo:
The mean action time is the mean of a probability density function that can be interpreted as a critical time, which is a finite estimate of the time taken for the transient solution of a reaction-diffusion equation to effectively reach steady state. For high-variance distributions, the mean action time under-approximates the critical time since it neglects to account for the spread about the mean. We can improve our estimate of the critical time by calculating the higher moments of the probability density function, called the moments of action, which provide additional information regarding the spread about the mean. Existing methods for calculating the nth moment of action require the solution of n nonhomogeneous boundary value problems which can be difficult and tedious to solve exactly. Here we present a simplified approach using Laplace transforms which allows us to calculate the nth moment of action without solving this family of boundary value problems and also without solving for the transient solution of the underlying reaction-diffusion problem. We demonstrate the generality of our method by calculating exact expressions for the moments of action for three problems from the biophysics literature. While the first problem we consider can be solved using existing methods, the second problem, which is readily solved using our approach, is intractable using previous techniques. The third problem illustrates how the Laplace transform approach can be used to study coupled linear reaction-diffusion equations.
Resumo:
An Application Specific Instruction-set Processor (ASIP) is a specialized processor tailored to run a particular application/s efficiently. However, when there are multiple candidate applications in the application’s domain it is difficult and time consuming to find optimum set of applications to be implemented. Existing ASIP design approaches perform this selection manually based on a designer’s knowledge. We help in cutting down the number of candidate applications by devising a classification method to cluster similar applications based on the special-purpose operations they share. This provides a significant reduction in the comparison overhead while resulting in customized ASIP instruction sets which can benefit a whole family of related applications. Our method gives users the ability to quantify the degree of similarity between the sets of shared operations to control the size of clusters. A case study involving twelve algorithms confirms that our approach can successfully cluster similar algorithms together based on the similarity of their component operations.
Resumo:
Railway Bridges deteriorate over time due to different critical factors including, flood, wind, earthquake, collision, and environment factors, such as corrosion, wear, termite attack, etc. In current practice, the contributions of the critical factors, towards the deterioration of railway bridges, which show their criticalities, are not appropriately taken into account. In this paper, a new method for quantifying the criticality of these factors will be introduced. The available knowledge as well as risk analyses conducted in different Australian standards and developed for bridge-design will be adopted. The analytic hierarchy process (AHP) is utilized for prioritising the factors. The method is used for synthetic rating of railway bridges developed by the authors of this paper. Enhancing the reliability of predicting the vulnerability of railway bridges to the critical factors, will be the significant achievement of this research.
Resumo:
Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A primary objective was to produce a comprehensive range of new distributed plasticity analytical benchmark solutions for verification of the concentrated plasticity methods. A distributed plasticity model was developed using shell finite elements to explicitly account for the effects of gradual yielding and spread of plasticity, initial geometric imperfections, residual stresses and local buckling deformations. The model was verified by comparison with large-scale steel frame test results and a variety of existing analytical benchmark solutions. This paper presents a description of the distributed plasticity model and details of the verification study.