925 resultados para Silver Nanorods


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical techniques toward the realization of sensitive and selective biosensing platforms have received considerable attention in recent times. Techniques based on interferometry, surface plasmon resonance, and waveguides have all proved popular, while spectroscopy in particular offers much potential. Raman spectroscopy is an information-rich technique in which the vibrational frequencies reveal much about the structure of a compound, but it is a weak process and offers poor sensitivity. In response to this problem, surface-enhanced Raman scattering (SERS) has received much attention, due to significant increases in sensitivity instigated by bringing the sample into contact with an enhancing substrate. Here we discuss a facile and rapid technique for the detection of pterins using SERS-active colloidal silver suspensions. Pterins are a family of biological compounds that are employed in nature in color pigmentation and as facilitators in metabolic pathways. In this work, small volumes of xanthopterin, isoxanthopterin, and 7,8-dihydrobiopterin have been examined while adsorbed to silver colloids. Limits of detection have been examined for both xanthopterin and isoxanthopterin using a 10-s exposure to a 12 mW 532 nm laser, which, while showing a trade-off between scan time and signal intensity, still provides the opportunity for the investigation of simultaneous detection of both pterins in solution. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3600658]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The syntheses of 2,2'-bipyridin-5-ylmethyl-5-(1,2-dithiolan-3-yl)pentanoate (L1) and N-(2,2'-bipyridin-5-ylmethyl)-5-(1,2-dithiolan-3-yl)pentanamide (L2) and their neutral fac carbonylrhenium(I) complexes [Re(L1)(CO)(3)Br] and [Re(L2)(CO)(3)Br] are reported. The. electronic absorption and emission spectra of the complexes are similar to the spectrum of the reference compound [Re(bipy)(CO)(3)Br] and correlate well with the density functional theory calculations undertaken. The surface-enhanced Raman spectroscopy (SERS) spectra (excited at both 532 and 785 nm) of the ligands and complexes were examined and compared to the spectrum of ethyl 5-(1,2-dithiolan-3-yl)pentanoate (L3), revealing that there is very little contribution to the spectra of these species from the dithiolated alkyl chains. The spectra are dominated by the characteristic peaks of a metalated 2,2'-bipyridyl group,arising from the silver colloid/ion complexation, and the rhenium center. The rhenium complexes show weak SERS bands related to the CO stretches and a broad band at 510 cm(-1) assigned to Re-CO stretching. Concentration dependent studies, measured by the relative intensity of several assigned peaks, indicate that, as the surface coverage increases, the bipyridine moiety lifts off the surface In the case of L1 and L2, this gives rise to complexes with silver at low concentration, enhancing the signals observed, while for the tricarbonylbromorhenium complexes of these ligands, the presence of the disulfide tether allows an enhancement in the limits of detection of these surface-borne species of 20 times in the case of [ReL2(CO)(3)Br] over [Re(bipy)(CO)(3)Br].

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of metalloporphyrins of the type M(TMPyP) (where M = Ag(II), Zn(II), Cu(II) and TMPyP = meso-tetrakis(4-N-methylpyridyl)porphyrin) have been investigated in solution and on the surface of silver sols, electrodes, and MELLFs (metal liquidlike films). Similar spectra were recorded on all three surfaces but significant differences in detailed behavior were found. In particular, a novel, reversible, and rapid photoinduced demetalation reaction has been observed for the AgII(TMPyP)/MELLF system. An apparently similar demetalation reaction for the same metalloporphyrin was observed on Ag electrodes but this reversed at a very much slower rate. No demetalation of Ag(II)(TMPyP) was observed with Ag sols nor with any of the other metalloporphyrins at any of the surfaces investigated. The implications of the findings in relation to the nature of the MELLF environment are briefly considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-enhanced Raman scattering (SERS) excited at several visible wavelengths and recorded using a cooled charged-coupled device detector is reported from the mobile, interfacial, liquid-like metal films (MELLFs) formed when solutions of metal complexes or pyridine in chlorocarbon solvents are mixed with aqueous sols of silver or gold. MELLF formation has not previously been reported for gold sols or for pyridine as stabilizer. Comparison of the spectra for the MELLFs formed from individual metal complexes and from 50:50 mixtures show that the spectral patterns observed for the latter are distinctive and are not generally equivalent to the sum of the spectra associated with the individual complexes, in contrast to the situation observed for sols where the individual spectra do appear to be additive. Raman scattering from both gold and silver MELLFs is readily observed at excitation wavelengths in the red, around 750 nm, but at 514 nm only that from silver films is detectable. These findings are considered in terms of particle size and absorption band intensities. A preliminary study of the film surface topography and particle size was carried out by scanning tunnelling electron microscopy (STM) of Ag MELLFs deposited on gold-coated mica substrates. Computer-processed images of the STM data show the presence on the film surface of finger-like bars, 200-400 nm long with approximately square cross-section, 40-60 nm side, together with other smaller cuboid features. The implications of these findings in relation to SERS are briefly considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scission of a supramolecular polymer-metal complex can be carried out using collapsing cavitation bubbles created by ultrasound. Although the most plausible scission mechanism of the coordinative bonds is through mechanical force, the influence of radicals and high hot-spot temperatures on scission has to be considered. A silver(I)-N-heterocyclic carbene complex was exposed to 20 kHz ultrasound in argon, nitrogen, methane, and isobutane saturated toluene. Scission percentages were almost equal under argon, nitrogen, and methane. Radical production differs by a factor of 10 under these gases, indicating that radical production is not a significant contributor to the scission process. A model to describe the displacement of the bubble wall, strain rates, and temperature in the gas shows that critical strain rates for coil-to-stretch transition, needed for scission, are achieved at reactor temperatures of 298 K, an acoustic pressure of 1.2 x 10(5) Pa, and an acoustic frequency of 20 kHz. Lower scission percentages were measured under isobutane, which also shows lower strain rates in model simulations. The activation of the polymer-metal complexes in toluene under the influence of ultrasound occurs through mechanical force.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of titanium dioxide and titanium dioxide with incorporated gold and silver nanoparticles were deposited onto glass microscope slides, steel and titanium foil coupons by two sol-gel dip-coating methods. The film's photocatalytic activity and ability to evolve oxygen in a sacrificial solution were assessed. It was found that photocatalytic activity increased with film thickness (from 50 to 500 nm thick samples) for the photocatalytic degradation of methylene blue in solution and resazurin redox dye in an intelligent ink dye deposited on the surface. Contrastingly, an optimum film thickness of similar to 200 nm for both composite and pure films of titanium dioxide was found for water oxidation, using persulfate (S2O82-) as a sacrificial electron acceptor. The nanoparticle composite films showed significantly higher activity in oxygen evolution studies compared with plain TiO2 films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modifying the surfaces of metal nanoparticles with self-assembled monolayers of functionalized thiols provides a simple and direct method to alter their surface properties. Mixed self-assembled monolayers can extend this approach since, in principle, the surfaces can be tuned by altering the proportion of each modifier that is adsorbed. However, this works best if the composition and microstructure of the monolayers can be controlled. Here, we have modified preprepared silver colloids with binary mixtures of thiols at varying concentrations and modifier ratios. Surface-enhanced Raman spectroscopy was then used to determine the effect of altering these parameters on the composition of the resulting mixed monolayers. The data could be explained using a new model based on a modified competitive Langmuir approach. It was found that the composition of the mixed monolayer only reflected the ratio of modifiers in the feedstock when the total amount of modifier was sufficient for approximately one monolayer coverage. At higher modifier concentrations the thermodynamically favored modifier dominated, but working at near monolayer concentrations allowed the surface composition to be controlled by changing the ratios of modifiers. Finally, a positively charged porphyrin probe molecule was used to investigate the microstructure of the mixed monolayers, i.e., homogeneous versus domains. In this case the modifier domains were found to be <2 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver coating of catheters has been shown to have inhibitory effects on bacterial growth and adhesion to catheter surfaces. In this study, plasma-modification was used to enhance the adhesion of an electroless silver coating on polyurethane. Both the antibacterial and antiadhesive properties of these coatings were investigated. Bacterial growth was inhibited in cultures exposed to silver-treated polyurethane compared to unmodified polyurethane. Higher growth inhibition was observed for polyurethane surfaces with lower silver coverage. Bacterial adhesion was completely inhibited on all silver-coated surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a series of 1-alkyl-3-methylimidazolium tetrachlorocuprate(II) and dibromoargentate(I) ionic liquids with enhanced antimicrobial activity when compared with 1-alkyl-3-methylimidazolium chloride ionic liquids. These new ionic liquids proved to be effective against a range of pathogenic bacteria and fungi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fabricated one-dimensional (1D) materials often have abundant structural defects. Experimental observation and numerical calculation indicate that the broken translation symmetry due to structural defects may play a more important role than the quantum confinement effect in the Raman features of optical phonons in polar semiconductor quantum wires such as SiC nanorods, (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of hydrogen in promoting the reduction by ammonia of NOx on silver catalysts has been investigated using a Short Time on Stream (STOS) technique to allow differentiation between potentially reactive intermediates and relatively inactive spectator species. Under these conditions, we have used DRIFTS to identify surface nitrate species that are formed and removed on a timescale of seconds. This is in contrast to nitrate species observed under normal steady-state conditions which can continue to form over many tens of minutes. Since this timescale of seconds is very similar to the response rate at which the NH3/NOx to N-2 reaction is accelerated when H-2 is added, or decelerated when H-2 is removed, we conclude that this fast-forming and fast disappearing nitrate species is most probably adsorbed on or close to the active Ag sites. The removal of such a blocking nitrate species from the active sites can explain the effect of H-2 in greatly increasing the rate of the overall de-NOx reaction. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic properties of CN adsorbed on Ag electrodes at different potentials have been studied by using the method of self-consistent-charge discrete variational Xa (SCC-DV-Xa) cluster calculations. It is shown that the binding of NCAg is dominated by both electrostatic and polarization effects derived from the charge of CN, and that the transfer of s charge from CN to silver is the largest donation contribution. The electrode potential influences this charge transfer process and the interaction between CN adsorbate and silver electrode. The results of quantum chemistry calculations fit well with the experimental data of in situ spectroscopic studies on the CN/Ag electrode systems. © 1991.