840 resultados para Signal-to-noise Ratio
Resumo:
Glycogen is a major substrate in energy metabolism and particularly important to prevent hypoglycemia in pathologies of glucose homeostasis such as type 1 diabetes mellitus (T1DM). (13) C-MRS is increasingly used to determine glycogen in skeletal muscle and liver non-invasively; however, the low signal-to-noise ratio leads to long acquisition times, particularly when glycogen levels are determined before and after interventions. In order to ease the requirements for the subjects and to avoid systematic effects of the lengthy examination, we evaluated if a standardized preparation period would allow us to shift the baseline (pre-intervention) experiments to a preceding day. Based on natural abundance (13) C-MRS on a clinical 3 T MR system the present study investigated the test-retest reliability of glycogen measurements in patients with T1DM and matched controls (n = 10 each group) in quadriceps muscle and liver. Prior to the MR examination, participants followed a standardized diet and avoided strenuous exercise for two days. The average coefficient of variation (CV) of myocellular glycogen levels was 9.7% in patients with T1DM compared with 6.6% in controls after a 2 week period, while hepatic glycogen variability was 13.3% in patients with T1DM and 14.6% in controls. For comparison, a single-session test-retest variability in four healthy volunteers resulted in 9.5% for skeletal muscle and 14.3% for liver. Glycogen levels in muscle and liver were not statistically different between test and retest, except for hepatic glycogen, which decreased in T1DM patients in the retest examination, but without an increase of the group distribution. Since the CVs of glycogen levels determined in a "single session" versus "within weeks" are comparable, we conclude that the major source of uncertainty is the methodological error and that physiological variations can be minimized by a pre-study standardization. For hepatic glycogen examinations, familiarization sessions (MR and potentially strenuous interventions) are recommended. Copyright © 2016 John Wiley & Sons, Ltd.
Resumo:
The PROPELLER (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction) magnetic resonance imaging (MRI) technique has inherent advantages over other fast imaging methods, including robust motion correction, reduced image distortion, and resistance to off-resonance effects. These features make PROPELLER highly desirable for T2*-sensitive imaging, high-resolution diffusion imaging, and many other applications. However, PROPELLER has been predominantly implemented as a fast spin-echo (FSE) technique, which is insensitive to T2* contrast, and requires time-inefficient signal averaging to achieve adequate signal-to-noise ratio (SNR) for many applications. These issues presently constrain the potential clinical utility of FSE-based PROPELLER. ^ In this research, our aim was to extend and enhance the potential applications of PROPELLER MRI by developing a novel multiple gradient echo PROPELLER (MGREP) technique that can overcome the aforementioned limitations. The MGREP pulse sequence was designed to acquire multiple gradient-echo images simultaneously, without any increase in total scan time or RF energy deposition relative to FSE-based PROPELLER. A new parameter was also introduced for direct user-control over gradient echo spacing, to allow variable sensitivity to T2* contrast. In parallel to pulse sequence development, an improved algorithm for motion correction was also developed and evaluated against the established method through extensive simulations. The potential advantages of MGREP over FSE-based PROPELLER were illustrated via three specific applications: (1) quantitative T2* measurement, (2) time-efficient signal averaging, and (3) high-resolution diffusion imaging. Relative to the FSE-PROPELLER method, the MGREP sequence was found to yield quantitative T2* values, increase SNR by ∼40% without any increase in acquisition time or RF energy deposition, and noticeably improve image quality in high-resolution diffusion maps. In addition, the new motion algorithm was found to improve the performance considerably in motion-artifact reduction. ^ Overall, this work demonstrated a number of enhancements and extensions to existing PROPELLER techniques. The new technical capabilities of PROPELLER imaging, developed in this thesis research, are expected to serve as the foundation for further expanding the scope of PROPELLER applications. ^
Resumo:
Magnetic resonance imaging (MRI) is a non-invasive technique that offers excellent soft tissue contrast for characterizing soft tissue pathologies. Diffusion tensor imaging (DTI) is an MRI technique that has shown to have the sensitivity to detect subtle pathology that is not evident on conventional MRI. ^ Rats are commonly used as animal models in characterizing the spinal cord pathologies including spinal cord injury (SCI), cancer, multiple sclerosis, etc. These pathologies could affect both thoracic and cervical regions and complete characterization of these pathologies using MRI requires DTI characterization in both the thoracic and cervical regions. Prior to the application of DTI for investigating the pathologic changes in the spinal cord, it is essential to establish DTI metrics in normal animals. ^ To date, in-vivo DTI studies of rat spinal cord have used implantable coils for high signal-to-noise ratio (SNR) and spin-echo pulse sequences for reduced geometric distortions. Implantable coils have several disadvantages including: (1) the invasive nature of implantation, (2) loss of SNR due to frequency shift with time in the longitudinal studies, and (3) difficulty in imaging the cervical region. While echo planar imaging (EPI) offers much shorter acquisition times compared to spin-echo imaging, EPI is very sensitive to static magnetic field inhomogeneities and the existing shimming techniques implemented on the MRI scanner do not perform well on spinal cord because of its geometry. ^ In this work, an integrated approach has been implemented for in-vivo DTI characterization of rat spinal cord in the thoracic and cervical regions. A three element phased array coil was developed for improved SNR and extended spatial coverage. A field-map shimming technique was developed for minimizing the geometric distortions in EPI images. Using these techniques, EPI based DWI images were acquired with optimized diffusion encoding scheme from 6 normal rats and the DTI-derived metrics were quantified. ^ The phantom studies indicated higher SNR and smaller bias in the estimated DTI metrics than the previous studies in the cervical region. In-vivo results indicated no statistical difference in the DTI characteristics of either gray matter or white matter between the thoracic and cervical regions. ^
Resumo:
High-resolution, small-bore PET systems suffer from a tradeoff between system sensitivity, and image quality degradation. In these systems long crystals allow mispositioning of the line of response due to parallax error and this mispositioning causes resolution blurring, but long crystals are necessary for high system sensitivity. One means to allow long crystals without introducing parallax errors is to determine the depth of interaction (DOI) of the gamma ray interaction within the detector module. While DOI has been investigated previously, newly available solid state photomultipliers (SSPMs) well-suited to PET applications and allow new modules for investigation. Depth of interaction in full modules is a relatively new field, and so even if high performance DOI capable modules were available, the appropriate means to characterize and calibrate the modules are not. This work presents an investigation of DOI capable arrays and techniques for characterizing and calibrating those modules. The methods introduced here accurately and reliably characterize and calibrate energy, timing, and event interaction positioning. Additionally presented is a characterization of the spatial resolution of DOI capable modules and a measurement of DOI effects for different angles between detector modules. These arrays have been built into a prototype PET system that delivers better than 2.0 mm resolution with a single-sided-stopping-power in excess of 95% for 511 keV g's. The noise properties of SSPMs scale with the active area of the detector face, and so the best signal-to-noise ratio is possible with parallel readout of each SSPM photodetector pixel rather than multiplexing signals together. This work additionally investigates several algorithms for improving timing performance using timing information from multiple SSPM pixels when light is distributed among several photodetectors.
Resumo:
During Ocean Drilling Program Leg 199 a high-resolution (~1-2 cm/k.y.) biogenic sediment record from the late Paleocene to the early Miocene was recovered, containing an uninterrupted set of geomagnetic chrons as well as a detailed record of calcareous and siliceous biostratigraphic datum events. Shipboard lithologic proxy measurements and shore-based determinations of CaCO3 revealed regular cycles that can be attributed to climatic forcing. Discovering drill sites with well defined magneto- and biostratigraphic records that also show clear lithologic cycles is rare and valuable and creates the opportunity to develop a detailed stratigraphic intersite correlation, providing the basis to study paleoceanographic processes and mass accumulation rates at high resolution. Here we present extensive postcruise work that extends the shipboard composite depth stratigraphy by providing a high-resolution revised meters composite depth (rmcd) scale to compensate for depth distortion within individual cores. The depth-aligned data were then used to generate stacked records of lithologic proxy measurements. Making use of the increased signal-to-noise ratio in the stacked records, we then proceeded to generate a detailed site-to-site correlation between Sites 1218 and 1219 in order to decrease the depth uncertainty for magneto- and biostratigraphic datums. Stacked lithologic proxy records in combination with discrete measurements of CaCO3 were then exploited to calculate high-resolution carbonate concentration curves by regression of the multisensor track data with discrete measurements. By matching correlative features between the cores and wireline logging data, we also rescaled our core rmcd back to in situ depths. Our study identifies lithology-dependent core expansion due to unloading as the mechanism of varying stratigraphic thicknesses between cores.
Resumo:
Originally, we had planned to piston core at Site 595 in order to meet the sedimentologic and biostratigraphic objectives outlined in the introductory chapter. However, consultation with our colleagues, Thomas Jordan and John Orcutt on board Melville, indicated that coring near the ocean bottom seismometer (OBS) array around Hole 595B could alter the programmed signal to noise ratio above which teleseisms trigger recording in the OBSs. They requested that we core no closer than about 8 km from three OBSs nearest Hole 595B, and selected a target for us about that distance to the west. Since a new beacon was required at this distance, a new site number, 596, was designated. Briefly, we planned to obtain oriented hydraulic piston cores to the top of the cherts, then core through the cherts using the extended core barrel (XCB) to basement. With improved recovery, we hoped to reach the sediment/basalt contact, and thus obtain a reliable biostratigraphic determination of the basement age. We planned to obtain at least one core in basement, perhaps more, with time permitting. We planned no geophysical program for the hole.
Resumo:
Beryllium 10 concentrations (10Becon) were measured at annual resolution from varved sediment cores of Lakes Tiefer See (TSK) and Czechowskie (JC) for the period 1983-2009 (~solar cycles 22 and 23). Calibrating the 10Becon time-series against complementing proxy records from the same archive as well as local precipitation and neutron monitor data, reflecting solar forced changes in atmospheric radionuclide production, allowed (i) identifying the main depositional processes and (ii) evaluating the potential for solar activity reconstruction. 10Becon in TSK and JC sediments are significantly correlated to varying neutron monitor counts (TSK: r=0.5, p=0.05, n=16; JC: r=0.46, p=0.03, n=22). However, the further correlations with changes in organic carbon contents in TSK as well as varying organic carbon and detrital matter contents in JC point to catchment specific biases in the 10Becon time-series. In an attempt to correct for these biases multiple regression analysis was applied to extract an atmospheric 10Be production signal (10Be atmosphere). To increase the signal to noise ratio a 10Be composite record (10Be composite) was calculated from the TSK and JC 10Be atmosphere time-series. 10Becomposite is significantly correlated to variations in the neutron monitor record (r=0.49, p=0.01, n=27) and matches the expected amplitude changes in 10Be production between solar cycle minima and maxima. This calibration study on 10Be from two sites indicates the large potential but also, partly site-specific, limitations of 10Be in varved lake sediments for solar activity reconstruction.
Resumo:
hyDRaCAT Spectral Reflectance Library for tundra provides the surface reflectance data and the bidirectional reflectance distribution function (BRDF) of important Arctic tundra vegetation communities at representative Siberian and Alaskan tundra sites. The aim of this dataset is the hyperspectral and spectro-directional reflectance characterization as basis for the extraction of vegetation parameters, and the normalization of BRDF effects in off-nadir and multi-temporal remote sensing data. The spectroscopic and field spectro-goniometric measurements were undertaken on the YAMAL2011 expedition of representative Siberian vegetation fields and on the North American Arctic Transect NAAT2012 expedition of Alaskan vegetation fields both belonging to the Greening-of-the-Arctic (GOA) program. For the field spectroscopy each 100 m2 vegetation study grid was divided into quadrats of 1 × 1 m. The averaged reflectance of all quadrats represents the spectral reflectance at the scale of the whole grid at the 10 × 10 m scale. For the surface radiometric measurements two GER1500 portable field spectroradiometers (Spectra Vista Corporation, Poughkeepsie, NY, USA) were used. The GER1500 measures radiance across the wavelength range of 350-1,050 nm, with sampling intervals of 1.5 nm and a radiance accuracy of 1.2 × 10**-1 W/cm**2/nm/sr. In order to increase the signal-to-noise ratio, 32 individual measurements were averaged per one target scan. To minimize variations in the target reflectance due to sun zenith angle changes, all measurements at one study location have been performed under similar sun zenith angles and during clear-sky conditions. The field spectrometer measurements were carried out with a GER1500 UV-VIS spectrometer The spectrogoniometer measurements were carried out with a self-designed spectro-goniometer: the Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS, patent publication number: DE 10 2011 117 713.A1). The ManTIS was equipped with the GER1500 spectrometer allowing spectro-directional measurements with up to 30° viewing zenith angle by full 360° viewing azimuth angles. Measurements in central Yamal (Siberia) at the research site 'Vaskiny Dachi' were carried out in the late summer phenological state from August 12 2011 to August 28 2011. All measurements in Alaska along the North South transect on the North Slope were taken between 29 June and 11 July 2012, ensuring that the vegetation was in the same phenological state near peak growing season.
Resumo:
Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0-430 ka and five records from 0-798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). When we compare the sea level stack with the d18O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic d18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the d18O of seawater.
Resumo:
We present for the first time all 12 d18O records obtained from ice cores drilled in the framework of the North Greenland Traverse (NGT) between 1993 and 1995 in northern Greenland. The cores cover an area of 680 km × 317 km, 10 % of the Greenland ice sheet. Depending on core length (100-175 m) and accumulation rate (90-200 kg/m**2/a) the single records reflect an isotope-temperature history over the last 500-1100 years. Lowest d18O mean values occur north of the summit and east of the main divide as a consequence of Greenland's topography. In general, ice cores drilled on the main ice divide show different results than those drilled east of the main ice divide that might be influenced by secondary regional moisture sources. A stack of all NGT records and the NGRIP record is presented with improved signal-to-noise ratio. Compared to single records, this stack represents the mean d18O signal for northern Greenland that is interpreted as proxy for temperature. Our northern Greenland d18O stack indicates distinctly enriched d18O values during medieval times, about AD 1420 ± 20 and from AD 1870 onwards. The period between AD 1420 and AD 1850 has depleted d18O values compared to the average for the entire millennium and represents the Little Ice Age. The d18O values of the 20th century are comparable to the medieval period but are lower than that about AD 1420.
Resumo:
We describe a compact lightweight impulse radar for radio-echo sounding of subsurface structures designed specifically for glaciological applications. The radar operates at frequencies between 10 and 75 MHz. Its main advantages are that it has a high signal-to-noise ratio and a corresponding wide dynamic range of 132 dB due mainly to its ability to perform real-time stacking (up to 4096 traces) as well as to the high transmitted power (peak voltage 2800 V). The maximum recording time window, 40 ?s at 100 MHz sampling frequency, results in possible radar returns from as deep as 3300 m. It is a versatile radar, suitable for different geophysical measurements (common-offset profiling, common midpoint, transillumination, etc.) and for different profiling set-ups, such as a snowmobile and sledge convoy or carried in a backpack and operated by a single person. Its low power consumption (6.6 W for the transmitter and 7.5 W for the receiver) allows the system to operate under battery power for mayor que7 hours with a total weight of menor que9 kg for all equipment, antennas and batteries.
Resumo:
Due to the fact that a metro network market is very cost sensitive, direct modulated schemes appear attractive. In this paper a CWDM (Coarse Wavelength Division Multiplexing) system is studied in detail by means of an Optical Communication System Design Software; a detailed study of the modulated current shape (exponential, sine and gaussian) for 2.5 Gb/s CWDM Metropolitan Area Networks is performed to evaluate its tolerance to linear impairments such as signal-to-noise-ratio degradation and dispersion. Point-to-point links are investigated and optimum design parameters are obtained. Through extensive sets of simulation results, it is shown that some of these shape pulses are more tolerant to dispersion when compared with conventional gaussian shape pulses. In order to achieve a low Bit Error Rate (BER), different types of optical transmitters are considered including strongly adiabatic and transient chirp dominated Directly Modulated Lasers (DMLs). We have used fibers with different dispersion characteristics, showing that the system performance depends, strongly, on the chosen DML?fiber couple.
Resumo:
This work presents results for the three-dimensional displacement field at Tenerife Island calculated from campaign GPS and ascending and descending ENVISAT DInSAR interferograms. The goal of this work is to provide an example of the flexibility of the technique by fusing together new varieties of geodetic data, and to observe surface deformations and study precursors of potential activity in volcanic regions. Interferometric processing of ENVISAT data was performed with GAMMA software. All possible combinations were used to create interferograms and then stacking was used to increase signal-to-noise ratio. Decorrelated areas were widely observed, particularly for interferograms with large perpendicular baseline and large time span. Tropospheric signal was also observed which significantly complicated the interpretation. Subsidence signal was observed in the NW part of the island and around Mount Teide and agreed in some regions with campaign GPS data. It is expected that the technique will provide better results when more high quality DInSAR and GPS data is available
Resumo:
Desde los inicios de la codificación de vídeo digital hasta hoy, tanto la señal de video sin comprimir de entrada al codificador como la señal de salida descomprimida del decodificador, independientemente de su resolución, uso de submuestreo en los planos de diferencia de color, etc. han tenido siempre la característica común de utilizar 8 bits para representar cada una de las muestras. De la misma manera, los estándares de codificación de vídeo imponen trabajar internamente con estos 8 bits de precisión interna al realizar operaciones con las muestras cuando aún no se han transformado al dominio de la frecuencia. Sin embargo, el estándar H.264, en gran auge hoy en día, permite en algunos de sus perfiles orientados al mundo profesional codificar vídeo con más de 8 bits por muestra. Cuando se utilizan estos perfiles, las operaciones efectuadas sobre las muestras todavía sin transformar se realizan con la misma precisión que el número de bits del vídeo de entrada al codificador. Este aumento de precisión interna tiene el potencial de permitir unas predicciones más precisas, reduciendo el residuo a codificar y aumentando la eficiencia de codificación para una tasa binaria dada. El objetivo de este Proyecto Fin de Carrera es estudiar, utilizando las medidas de calidad visual objetiva PSNR (Peak Signal to Noise Ratio, relación señal ruido de pico) y SSIM (Structural Similarity, similaridad estructural), el efecto sobre la eficiencia de codificación y el rendimiento al trabajar con una cadena de codificación/descodificación H.264 de 10 bits en comparación con una cadena tradicional de 8 bits. Para ello se utiliza el codificador de código abierto x264, capaz de codificar video de 8 y 10 bits por muestra utilizando los perfiles High, High 10, High 4:2:2 y High 4:4:4 Predictive del estándar H.264. Debido a la ausencia de herramientas adecuadas para calcular las medidas PSNR y SSIM de vídeo con más de 8 bits por muestra y un tipo de submuestreo de planos de diferencia de color distinto al 4:2:0, como parte de este proyecto se desarrolla también una aplicación de análisis en lenguaje de programación C capaz de calcular dichas medidas a partir de dos archivos de vídeo sin comprimir en formato YUV o Y4M. ABSTRACT Since the beginning of digital video compression, the uncompressed video source used as input stream to the encoder and the uncompressed decoded output stream have both used 8 bits for representing each sample, independent of resolution, chroma subsampling scheme used, etc. In the same way, video coding standards force encoders to work internally with 8 bits of internal precision when working with samples before being transformed to the frequency domain. However, the H.264 standard allows coding video with more than 8 bits per sample in some of its professionally oriented profiles. When using these profiles, all work on samples still in the spatial domain is done with the same precision the input video has. This increase in internal precision has the potential of allowing more precise predictions, reducing the residual to be encoded, and thus increasing coding efficiency for a given bitrate. The goal of this Project is to study, using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity) objective video quality metrics, the effects on coding efficiency and performance caused by using an H.264 10 bit coding/decoding chain compared to a traditional 8 bit chain. In order to achieve this goal the open source x264 encoder is used, which allows encoding video with 8 and 10 bits per sample using the H.264 High, High 10, High 4:2:2 and High 4:4:4 Predictive profiles. Given that no proper tools exist for computing PSNR and SSIM values of video with more than 8 bits per sample and chroma subsampling schemes other than 4:2:0, an analysis application written in the C programming language is developed as part of this Project. This application is able to compute both metrics from two uncompressed video files in the YUV or Y4M format.
Resumo:
Respiratory motion is a major source of reduced quality in positron emission tomography (PET). In order to minimize its effects, the use of respiratory synchronized acquisitions, leading to gated frames, has been suggested. Such frames, however, are of low signal-to-noise ratio (SNR) as they contain reduced statistics. Super-resolution (SR) techniques make use of the motion in a sequence of images in order to improve their quality. They aim at enhancing a low-resolution image belonging to a sequence of images representing different views of the same scene. In this work, a maximum a posteriori (MAP) super-resolution algorithm has been implemented and applied to respiratory gated PET images for motion compensation. An edge preserving Huber regularization term was used to ensure convergence. Motion fields were recovered using a B-spline based elastic registration algorithm. The performance of the SR algorithm was evaluated through the use of both simulated and clinical datasets by assessing image SNR, as well as the contrast, position and extent of the different lesions. Results were compared to summing the registered synchronized frames on both simulated and clinical datasets. The super-resolution image had higher SNR (by a factor of over 4 on average) and lesion contrast (by a factor of 2) than the single respiratory synchronized frame using the same reconstruction matrix size. In comparison to the motion corrected or the motion free images a similar SNR was obtained, while improvements of up to 20% in the recovered lesion size and contrast were measured. Finally, the recovered lesion locations on the SR images were systematically closer to the true simulated lesion positions. These observations concerning the SNR, lesion contrast and size were confirmed on two clinical datasets included in the study. In conclusion, the use of SR techniques applied to respiratory motion synchronized images lead to motion compensation combined with improved image SNR and contrast, without any increase in the overall acquisition times.