935 resultados para Shannon Sampling Theorem
Resumo:
BACKGROUND: In order to optimise the cost-effectiveness of active surveillance to substantiate freedom from disease, a new approach using targeted sampling of farms was developed and applied on the example of infectious bovine rhinotracheitis (IBR) and enzootic bovine leucosis (EBL) in Switzerland. Relevant risk factors (RF) for the introduction of IBR and EBL into Swiss cattle farms were identified and their relative risks defined based on literature review and expert opinions. A quantitative model based on the scenario tree method was subsequently used to calculate the required sample size of a targeted sampling approach (TS) for a given sensitivity. We compared the sample size with that of a stratified random sample (sRS) with regard to efficiency. RESULTS: The required sample sizes to substantiate disease freedom were 1,241 farms for IBR and 1,750 farms for EBL to detect 0.2% herd prevalence with 99% sensitivity. Using conventional sRS, the required sample sizes were 2,259 farms for IBR and 2,243 for EBL. Considering the additional administrative expenses required for the planning of TS, the risk-based approach was still more cost-effective than a sRS (40% reduction on the full survey costs for IBR and 8% for EBL) due to the considerable reduction in sample size. CONCLUSIONS: As the model depends on RF selected through literature review and was parameterised with values estimated by experts, it is subject to some degree of uncertainty. Nevertheless, this approach provides the veterinary authorities with a promising tool for future cost-effective sampling designs.
Resumo:
Full axon counting of optic nerve cross-sections represents the most accurate method to quantify axonal damage, but such analysis is very labour intensive. Recently, a new method has been developed, termed targeted sampling, which combines the salient features of a grading scheme with axon counting. Preliminary findings revealed the method compared favourably with random sampling. The aim of the current study was to advance our understanding of the effect of sampling patterns on axon counts by comparing estimated axon counts from targeted sampling with those obtained from fixed-pattern sampling in a large collection of optic nerves with different severities of axonal injury.
Resumo:
Recent optimizations of NMR spectroscopy have focused their attention on innovations in new hardware, such as novel probes and higher field strengths. Only recently has the potential to enhance the sensitivity of NMR through data acquisition strategies been investigated. This thesis has focused on the practice of enhancing the signal-to-noise ratio (SNR) of NMR using non-uniform sampling (NUS). After first establishing the concept and exact theory of compounding sensitivity enhancements in multiple non-uniformly sampled indirect dimensions, a new result was derived that NUS enhances both SNR and resolution at any given signal evolution time. In contrast, uniform sampling alternately optimizes SNR (t < 1.26T2) or resolution (t~3T2), each at the expense of the other. Experiments were designed and conducted on a plant natural product to explore this behavior of NUS in which the SNR and resolution continue to improve as acquisition time increases. Possible absolute sensitivity improvements of 1.5 and 1.9 are possible in each indirect dimension for matched and 2x biased exponentially decaying sampling densities, respectively, at an acquisition time of ¿T2. Recommendations for breaking into the linear regime of maximum entropy (MaxEnt) are proposed. Furthermore, examination into a novel sinusoidal sampling density resulted in improved line shapes in MaxEnt reconstructions of NUS data and comparable enhancement to a matched exponential sampling density. The Absolute Sample Sensitivity derived and demonstrated here for NUS holds great promise in expanding the adoption of non-uniform sampling.
Performance Tuning Non-Uniform Sampling for Sensitivity Enhancement of Signal-Limited Biological NMR
Resumo:
Non-uniform sampling (NUS) has been established as a route to obtaining true sensitivity enhancements when recording indirect dimensions of decaying signals in the same total experimental time as traditional uniform incrementation of the indirect evolution period. Theory and experiments have shown that NUS can yield up to two-fold improvements in the intrinsic signal-to-noise ratio (SNR) of each dimension, while even conservative protocols can yield 20-40 % improvements in the intrinsic SNR of NMR data. Applications of biological NMR that can benefit from these improvements are emerging, and in this work we develop some practical aspects of applying NUS nD-NMR to studies that approach the traditional detection limit of nD-NMR spectroscopy. Conditions for obtaining high NUS sensitivity enhancements are considered here in the context of enabling H-1,N-15-HSQC experiments on natural abundance protein samples and H-1,C-13-HMBC experiments on a challenging natural product. Through systematic studies we arrive at more precise guidelines to contrast sensitivity enhancements with reduced line shape constraints, and report an alternative sampling density based on a quarter-wave sinusoidal distribution that returns the highest fidelity we have seen to date in line shapes obtained by maximum entropy processing of non-uniformly sampled data.
Resumo:
Background: The lectin pathway of complement activation, in particular mannose-binding lectin (MBL), has been extensively investigated over recent years. So far, studies were exclusively based on venous samples. The aim of this study was to investigate whether measurements of lectin pathway proteins obtained by capillary sampling are in agreement with venous samples. Methods: Prospective study including 31 infants that were admitted with suspected early-onset sepsis. Lectin pathway proteins were measured in simultaneously obtained capillary and venous samples. Bland–Altman plots of logarithmized results were constructed, and the mean capillary to venous ratios (ratiocap/ven) were calculated with their 95% confidence intervals (CI). Results: The agreement between capillary and venous sampling was very high for MBL (mean ratiocap/ven, 1.01; 95% CI, 0.85–1.19). Similarly, high agreement was observed for H-ficolin (mean ratiocap/ven, 1.02; 95% CI, 0.72–1.44), MASP-2 (1.04; 0.59–1.84), MASP-3 (0.96; 0.71–1.28), and MAp44 (1.01; 0.82–1.25), while the agreement was moderate for M-ficolin (mean ratiocap/ven, 0.78; 95% CI, 0.27–2.28). Conclusions: The results of this study show an excellent agreement between capillary and venous samples for most lectin pathway proteins. Except for M-ficolin, small volume capillary samples can thus be used when assessing lectin pathway proteins in neonates and young children.
Resumo:
We conducted a molecular study of MRSA isolated in Swiss hospitals, including the first five consecutive isolates recovered from blood cultures and the first ten isolates recovered from other sites in newly identified carriers. Among 73 MRSA isolates, 44 different double locus sequence typing (DLST) types and 32 spa types were observed. Most isolates belonged to the NewYork/Japan, the UK-EMRSA-15, the South German and the Berlin clones. In a country with a low to moderate MRSA incidence, inclusion of non-invasive isolates allowed a more accurate description of the diversity.
Resumo:
Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch, and Wild (1999) under two-phase sampling designs. We show that the maximum likelihood estimators for both the parametric and nonparametric parts of the model are asymptotically normal and efficient. The efficient influence function for the parametric part aggress with the more general information bound calculations of Robins, Hsieh, and Newey (1995). By verifying the conditions of Murphy and Van der Vaart (2000) for a least favorable parametric submodel, we provide asymptotic justification for statistical inference based on profile likelihood.
Resumo:
Geostatistics involves the fitting of spatially continuous models to spatially discrete data (Chil`es and Delfiner, 1999). Preferential sampling arises when the process that determines the data-locations and the process being modelled are stochastically dependent. Conventional geostatistical methods assume, if only implicitly, that sampling is non-preferential. However, these methods are often used in situations where sampling is likely to be preferential. For example, in mineral exploration samples may be concentrated in areas thought likely to yield high-grade ore. We give a general expression for the likelihood function of preferentially sampled geostatistical data and describe how this can be evaluated approximately using Monte Carlo methods. We present a model for preferential sampling, and demonstrate through simulated examples that ignoring preferential sampling can lead to seriously misleading inferences. We describe an application of the model to a set of bio-monitoring data from Galicia, northern Spain, in which making allowance for preferential sampling materially changes the inferences.
Resumo:
In this paper, we consider estimation of the causal effect of a treatment on an outcome from observational data collected in two phases. In the first phase, a simple random sample of individuals are drawn from a population. On these individuals, information is obtained on treatment, outcome, and a few low-dimensional confounders. These individuals are then stratified according to these factors. In the second phase, a random sub-sample of individuals are drawn from each stratum, with known, stratum-specific selection probabilities. On these individuals, a rich set of confounding factors are collected. In this setting, we introduce four estimators: (1) simple inverse weighted, (2) locally efficient, (3) doubly robust and (4)enriched inverse weighted. We evaluate the finite-sample performance of these estimators in a simulation study. We also use our methodology to estimate the causal effect of trauma care on in-hospital mortality using data from the National Study of Cost and Outcomes of Trauma.
Resumo:
In medical follow-up studies, ordered bivariate survival data are frequently encountered when bivariate failure events are used as the outcomes to identify the progression of a disease. In cancer studies interest could be focused on bivariate failure times, for example, time from birth to cancer onset and time from cancer onset to death. This paper considers a sampling scheme where the first failure event (cancer onset) is identified within a calendar time interval, the time of the initiating event (birth) can be retrospectively confirmed, and the occurrence of the second event (death) is observed sub ject to right censoring. To analyze this type of bivariate failure time data, it is important to recognize the presence of bias arising due to interval sampling. In this paper, nonparametric and semiparametric methods are developed to analyze the bivariate survival data with interval sampling under stationary and semi-stationary conditions. Numerical studies demonstrate the proposed estimating approaches perform well with practical sample sizes in different simulated models. We apply the proposed methods to SEER ovarian cancer registry data for illustration of the methods and theory.