996 resultados para Series compensation
Resumo:
Superconducting Fault Current Limiters (SFCLs) are able to reduce fault currents to an acceptable value, reducing potential mechanical and thermal damage and allowing more flexibility in an electric power system's design. Due to limitations in current YBCO thin film manufacturing techniques, it is necessary to connect a number of thin films in different series and parallel configurations in order to realise a practical SFCL for electric power system applications. The amount of resistance generated (i.e. the degree of current limitation), the characteristics of the S-N transition, and the time at which they operate is different depending on their comparative characteristics. However, it is desirable for series-connected thin films to have an operating time difference as small as possible to avoid placing an excess burden on certain thin films. The role of a parallel resistance, along with the influence of thin film characteristics, such as critical current (Ic), are discussed in regards to the design of SFCLs using YBCO thin films. © 2008 IOP Publishing Ltd.
Resumo:
Physical model experiments on compensation grouting in sands were performed in two different setups (Cambridge and Delft). The effect of water-cement (w/c) ratio, bentonite content (b.c.) and injection rate on compensation efficiency was investigated. Results show a considerable drop in compensation efficiency resulted from reducing the soil density. Injection in dense sand (R.D. = 93%) resulted in efficiencies between 40-90%, whereas injection in medium-dense sand (R.D. = 60-75%) yielded in reduced efficiencies between 10-40%. When the w/c ratio increased from 0.5 to 1.5 for a given density (R.D. = 93%) and the b.c. of 4%, the compensation efficiency value decreased. Typical efficiencies were between 60% and 40-50% for w/c ratios of 0.5 and 1.5, respectively. The values of compensation and grout efficiencies were almost equal, suggesting that pressure filtration happens mainly during injection. Increasing the b.c. improved the compensation efficiency. When a higher b.c. of 12% to 14% was used, typical compensation efficiencies in dense sand were 78 and 90% for w/c ratios of 1.5 and 1.8 respectively. © 2012 Taylor & Francis Group.
Resumo:
In this paper we study parameter estimation for time series with asymmetric α-stable innovations. The proposed methods use a Poisson sum series representation (PSSR) for the asymmetric α-stable noise to express the process in a conditionally Gaussian framework. That allows us to implement Bayesian parameter estimation using Markov chain Monte Carlo (MCMC) methods. We further enhance the series representation by introducing a novel approximation of the series residual terms in which we are able to characterise the mean and variance of the approximation. Simulations illustrate the proposed framework applied to linear time series, estimating the model parameter values and model order P for an autoregressive (AR(P)) model driven by asymmetric α-stable innovations. © 2012 IEEE.
Resumo:
Vector Taylor Series (VTS) model based compensation is a powerful approach for noise robust speech recognition. An important extension to this approach is VTS adaptive training (VAT), which allows canonical models to be estimated on diverse noise-degraded training data. These canonical model can be estimated using EM-based approaches, allowing simple extensions to discriminative VAT (DVAT). However to ensure a diagonal corrupted speech covariance matrix the Jacobian (loading matrix) relating the noise and clean speech is diagonalised. In this work an approach for yielding optimal diagonal loading matrices based on minimising the expected KL-divergence between the diagonal loading matrix and "correct" distributions is proposed. The performance of DVAT using the standard and optimal diagonalisation was evaluated on both in-car collected data and the Aurora4 task. © 2012 IEEE.
Resumo:
The object of this paper is to give a complete treatment of the realizability of positive-real biquadratic impedance functions by six-element series-parallel networks comprising resistors, capacitors, and inductors. This question was studied but not fully resolved in the classical electrical circuit literature. Renewed interest in this question arises in the synthesis of passive mechanical impedances. Recent work by the authors has introduced the concept of a regular positive-real functions. It was shown that five-element networks are capable of realizing all regular and some (but not all) nonregular biquadratic positive-real functions. Accordingly, the focus of this paper is on the realizability of nonregular biquadratics. It will be shown that the only six-element series-parallel networks which are capable of realizing nonregular biquadratic impedances are those with three reactive elements or four reactive elements. We identify a set of networks that can realize all the nonregular biquadratic functions for each of the two cases. The realizability conditions for the networks are expressed in terms of a canonical form for biquadratics. The nonregular realizable region for each of the networks is explicitly characterized. © 2004-2012 IEEE.
Resumo:
With series insulated-gate bipolar transistor (IGBT) operation, well-matched gate drives will not ensure balanced dynamic voltage sharing between the switching devices. Rather, it is IGBT parasitic capacitances, mainly gate-to-collector capacitance Cgc, that dominate transient voltage sharing. As Cgc is collector voltage dependant and is significantly larger during the initial turn-off transition, it dominates IGBT dynamic voltage sharing. This paper presents an active control technique for series-connected IGBTs that allows their dynamic voltage transition dV\ce/dt to adaptively vary. Both switch ON and OFF transitions are controlled to follow a predefined dVce/dt. Switching losses associated with this technique are minimized by the adaptive dv /dt control technique incorporated into the design. A detailed description of the control circuits is presented in this paper. Experimental results with up to three series devices in a single-ended dc chopper circuit, operating at various low voltage and current levels, are used to illustrate the performance of the proposed technique. © 2012 IEEE.
Resumo:
This paper presents the use of an Active Voltage Control (AVC) technique for balancing the voltages in a series connection of Insulated Gate Bipolar Transistors (IGBTs). The AVC technique can control the switching trajectory of an IGBT according to a pre-set reference signal. In series connections, every series connected IGBT follows the reference and so that the dynamic voltage sharing is achieved. For the static voltage balancing, a temporary clamp technique is introduced. The temporary clamp technique clamps the collector-emitter voltage of all the series connected IGBTs at the ideal voltage so that the IGBTs will share the voltage evenly. © 2012 IEEE.
Resumo:
Variational methods are a key component of the approximate inference and learning toolbox. These methods fill an important middle ground, retaining distributional information about uncertainty in latent variables, unlike maximum a posteriori methods (MAP), and yet generally requiring less computational time than Monte Carlo Markov Chain methods. In particular the variational Expectation Maximisation (vEM) and variational Bayes algorithms, both involving variational optimisation of a free-energy, are widely used in time-series modelling. Here, we investigate the success of vEM in simple probabilistic time-series models. First we consider the inference step of vEM, and show that a consequence of the well-known compactness property of variational inference is a failure to propagate uncertainty in time, thus limiting the usefulness of the retained distributional information. In particular, the uncertainty may appear to be smallest precisely when the approximation is poorest. Second, we consider parameter learning and analytically reveal systematic biases in the parameters found by vEM. Surprisingly, simpler variational approximations (such a mean-field) can lead to less bias than more complicated structured approximations.
Resumo:
We live in an era of abundant data. This has necessitated the development of new and innovative statistical algorithms to get the most from experimental data. For example, faster algorithms make practical the analysis of larger genomic data sets, allowing us to extend the utility of cutting-edge statistical methods. We present a randomised algorithm that accelerates the clustering of time series data using the Bayesian Hierarchical Clustering (BHC) statistical method. BHC is a general method for clustering any discretely sampled time series data. In this paper we focus on a particular application to microarray gene expression data. We define and analyse the randomised algorithm, before presenting results on both synthetic and real biological data sets. We show that the randomised algorithm leads to substantial gains in speed with minimal loss in clustering quality. The randomised time series BHC algorithm is available as part of the R package BHC, which is available for download from Bioconductor (version 2.10 and above) via http://bioconductor.org/packages/2.10/bioc/html/BHC.html. We have also made available a set of R scripts which can be used to reproduce the analyses carried out in this paper. These are available from the following URL. https://sites.google.com/site/randomisedbhc/.
Resumo:
The accurate prediction of time-changing covariances is an important problem in the modeling of multivariate financial data. However, some of the most popular models suffer from a) overfitting problems and multiple local optima, b) failure to capture shifts in market conditions and c) large computational costs. To address these problems we introduce a novel dynamic model for time-changing covariances. Over-fitting and local optima are avoided by following a Bayesian approach instead of computing point estimates. Changes in market conditions are captured by assuming a diffusion process in parameter values, and finally computationally efficient and scalable inference is performed using particle filters. Experiments with financial data show excellent performance of the proposed method with respect to current standard models.
Resumo:
This paper presents flow field measurements for the turbulent stratified burner introduced in two previous publications in which high resolution scalar measurements were made by Sweeney et al. [1,2] for model validation. The flow fields of the series of premixed and stratified methane/air flames are investigated under turbulent, globally lean conditions (φg=0.75). Velocity data acquired with laser Doppler anemometry (LDA) and particle image velocimetry (PIV) are presented and discussed. Pairwise 2-component LDA measurements provide profiles of axial velocity, radial velocity, tangential velocity and corresponding fluctuating velocities. The LDA measurements of axial and tangential velocities enable the swirl number to be evaluated and the degree of swirl characterized. Power spectral density and autocorrelation functions derived from the LDA data acquired at 10kHz are optimized to calculate the integral time scales. Flow patterns are obtained using a 2-component PIV system operated at 7Hz. Velocity profiles and spatial correlations derived from the PIV and LDA measurements are shown to be in very good agreement, thus offering 3D mapping of the velocities. A strong correlation was observed between the shape of the recirculation zones above the central bluff body and the effects of heat release, stoichiometry and swirl. Detailed analyses of the LDA data further demonstrate that the flow behavior changes significantly with the levels of swirl and stratification, which combines the contributions of dilatation, recirculation and swirl. Key turbulence parameters are derived from the total velocity components, combining axial, radial and tangential velocities. © 2013 The Combustion Institute.