972 resultados para Sequence Data
Resumo:
BACKGROUND: By analyzing human immunodeficiency virus type 1 (HIV-1) pol sequences from the Swiss HIV Cohort Study (SHCS), we explored whether the prevalence of non-B subtypes reflects domestic transmission or migration patterns. METHODS: Swiss non-B sequences and sequences collected abroad were pooled to construct maximum likelihood trees, which were analyzed for Swiss-specific subepidemics, (subtrees including ≥80% Swiss sequences, bootstrap >70%; macroscale analysis) or evidence for domestic transmission (sequence pairs with genetic distance <1.5%, bootstrap ≥98%; microscale analysis). RESULTS: Of 8287 SHCS participants, 1732 (21%) were infected with non-B subtypes, of which A (n = 328), C (n = 272), CRF01_AE (n = 258), and CRF02_AG (n = 285) were studied further. The macroscale analysis revealed that 21% (A), 16% (C), 24% (CRF01_AE), and 28% (CRF02_AG) belonged to Swiss-specific subepidemics. The microscale analysis identified 26 possible transmission pairs: 3 (12%) including only homosexual Swiss men of white ethnicity; 3 (12%) including homosexual white men from Switzerland and partners from foreign countries; and 10 (38%) involving heterosexual white Swiss men and females of different nationality and predominantly nonwhite ethnicity. CONCLUSIONS: Of all non-B infections diagnosed in Switzerland, <25% could be prevented by domestic interventions. Awareness should be raised among immigrants and Swiss individuals with partners from high prevalence countries to contain the spread of non-B subtypes.
Resumo:
Xenopus laevis oocytes were used to assay for trans-acting factors shown previously to be involved in the liver-specific regulation of the vitellogenin genes in vitro. To this end, crude liver nuclear extracts obtained from adult estrogen-induced Xenopus females were fractionated by heparin-Sepharose chromatography using successive elutions with 0.1, 0.35, 0.6, and 1.0 M KCl. When these four fractions were injected into oocytes, only the 0.6-M KCl protein fraction significantly stimulated mRNA synthesis from the endogenous B class vitellogenin genes. This same fraction induced estrogen-dependent in vitro transcription from the vitellogenin B1 promoter, suggesting that it contains at least a minimal set of basal transcription factors as well as two positive factors essential for vitellogenin in vitro transcription, i.e. the NF-I-like liver factor B and the estrogen receptor (ER). The presence of these two latter factors was determined by footprinting and gel retardation assays, respectively. In contrast, injection of an expression vector carrying the sequence encoding the ER was unable to activate transcription from the oocyte chromosomal vitellogenin genes. This suggests that the ER alone cannot overcome tissue-specific barriers and that one or several additional liver components participate in mediating tissue-specific expression of the vitellogenin genes. In this respect, we present evidence that the oocyte germinal vesicles contain an NF-I-like activity different from that found in hepatocytes of adult frogs. This observation might explain the lack of vitellogenin gene activation in oocytes injected with the ER cDNA only.
Resumo:
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.
Resumo:
The HbpR protein is the sigma54-dependent transcription activator for 2-hydroxybiphenyl degradation in Pseudomonas azelaica. The ability of HbpR and XylR, which share 35% amino acid sequence identity, to cross-activate the PhbpC and Pu promoters was investigated by determining HbpR- or XylR-mediated luciferase expression and by DNA binding assays. XylR measurably activated the PhbpC promoter in the presence of the effector m-xylene, both in Escherichia coli and Pseudomonas putida. HbpR weakly stimulated the Pu promoter in E. coli but not in P. azelaica. Poor HbpR-dependent activation from Pu was caused by a weak binding to the operator region. To create promoters efficiently activated by both regulators, the HbpR binding sites on PhbpC were gradually changed into the XylR binding sites of Pu by site-directed mutagenesis. Inducible luciferase expression from mutated promoters was tested in E. coli on a two plasmid system, and from mono copy gene fusions in P. azelaica and P. putida. Some mutants were efficiently activated by both HbpR and XylR, showing that promoters can be created which are permissive for both regulators. Others achieved a higher XylR-dependent transcription than from Pu itself. Mutants were also obtained which displayed a tenfold lower uninduced expression level by HbpR than the wild-type PhbpC, while keeping the same maximal induction level. On the basis of these results, a dual-responsive bioreporter strain of P. azelaica was created, containing both XylR and HbpR, and activating luciferase expression from the same single promoter independently with m-xylene and 2-hydroxybiphenyl.
Resumo:
Three classes of thyroid hormone response elements have been described. They are composed of two half-sites arranged either as a palindromic, a direct repeat or as an inverted palindromic array. Receptor homodimers as well as heterodimers can bind to all three types of response element. While the ligand binding domain of the receptors provides the major dimerization surface, asymmetric contacts between the DNA binding domains are necessary for binding to a direct repeat. Moreover, some recent findings suggest that in TR, compared to RXR, the ligand binding domain has a 180 degrees rotation with respect to the DNA binding domain. This feature could explain the preferential binding of the RXR-TR heterodimer to the direct repeat response element, in which RXR exclusively binds the 5' half-site, and of the TR homodimer to the inverted palindrome response element.
Resumo:
There is considerable interest in the development of vaccination strategies that would elicit strong tumor-specific CTL responses in cancer patients. One strategy consists of using recombinant viruses encoding amino acid sequences corresponding to natural CTL-defined peptide from tumor Ags as immunogens. However, studies with synthetic tumor antigenic peptides have demonstrated that introduction of single amino acid substitutions may dramatically increase their immunogenicity. In this study we have used a well-defined human melanoma tumor Ag system to test the possibility of translating the immunological potency of synthetic tumor antigenic peptide analogues into recombinant vaccinia viruses carrying constructs with the appropriate nucleotide substitutions. Our results indicate that the use of a mutated minigene construct directing the expression of a modified melanoma tumor Ag leads to improved Ag recognition and, more importantly, to enhanced immunogenicity. Thus, recombinant vaccinia viruses containing mutated minigene sequences may lead to new strategies for the induction of strong tumor-specific CTL responses in cancer patients.
Resumo:
The monogenetic kinetoplastid protozoan parasite Herpetomonas samuelpessoai expresses a surface-exposed metalloprotease. Comparable to the Leishmania promastigote surface protease, or PSP, the protease of Herpetomonas is active at the surface of fixed and live organisms, and both enzymes display an identical cleavage specificity toward a nonapeptide substrate. The protease was enriched 440 times by partition into Triton X-114 followed by 2 steps of anion exchange chromatography. The 56-kDa enzyme is inhibited by the metal chelator 1,10-phenanthroline and is susceptible to cleavage by glycosyl-phosphatidylinositol phospholipase C (GPI-PLC). The conservation of an identical surface protease activity in these monogenetic and digenetic trypanosomatids suggests that the enzyme has a physiological function in the promastigote (insect) stage of these parasites.
Resumo:
The splice pattern of beta-amyloid precursor protein (beta-APP) has been studied in a variety of neuronal and glial cells and in brain cell aggregate cultures by the polymerase chain reaction (PCR). The brain-typical pattern, in which beta-APP695 is the dominant form, has been found only in aggregate cultures but not in any of the other cell types including neuronal cell lines. Selective elimination of glial cells from aggregates resulted in increased quantities of beta-APP695, whereas removal of neurons led to a reduction of beta-APP695 and to an elevation of beta-APP751 and beta-APP770. This shift of splice pattern was not observed in cocultures of the neuronal cell line PC 12 with primary astrocytes combined in a variety of cellular ratios. Blood serum, which is an essential component of these cultures, tested on aggregates, did not reduce the amount of beta-APP695 or have any marked effects on splice patterns generally. From these results it is concluded that investigations on brain-typical splicing of beta-APP require primary neurons. Neuronal cell lines may be no suitable model systems. Splicing events favoring production of beta-APP695 may mark an important, very early step of amyloid formation in the brain.
Resumo:
We have previously characterized an infectious mouse mammary tumor virus [(MMTV(SW)] which induces a strong superantigen response in vivo. Here we describe the isolation and characterization of MMTV(C4) which was derived from milk of mice implanted with hyperplastic alveolar nodules. MMTV(C4) stimulates V beta 2 expressing T cells after local injection in vivo. Comparison with known open reading frame (orf) sequences revealed high homology to Mtv-6, an endogenous virus interacting with V beta 3-expressing T cells. The carboxyl-terminal amino acids were, however, altered. High homology including the carboxyl-terminal orf amino acids were found with MMTV(C3H-K). We show here that MMTV(C3H-K) has lost its superantigen function. Sequence comparisons permitted the characterization of few key amino acids which could be important for T cell receptor interaction and superantigen processing.
Resumo:
Ten microsatellite loci and a partial sequence of the COII mitochondrial gene were used to investigate genetic differentiation in B. terrestris, a bumble bee of interest for its high-value crop pollination. The analysis included eight populations from the European continent, five from Mediterranean islands (six subspecies altogether) and one from Tenerife (initially described as a colour form of B. terrestris but recently considered as a separate species, B. canariensis). Eight of the 10 microsatellite loci displayed high levels of polymorphism in most populations. In B. terrestris populations, the total number of alleles detected per polymorphic locus ranged from 3 to 16, with observed allelic diversity from 3.8 +/- 0.5 to 6.5 +/- 1.4 and average calculated heterozygosities from 0.41 +/- 0.09 to 0.65 +/- 0.07. B. canariensis showed a significantly lower average calculated heterozygosity (0.12 +/- 0.08) and observed allelic diversity (1.5 +/- 0.04) as compared to both continental and island populations of B. terrestris. No significant differentiation was found among populations of B. terrestris from the European continent. In contrast, island populations were all significantly and most of them strongly differentiated from continental populations. B. terrestris mitochondrial DNA is characterized by a low nucleotide diversity: 0.18% +/- 0.07%, 0.20% +/- 0.04% and 0.27% +/- 0.04% for the continental populations, the island populations and all populations together, respectively. The only haplotype found in the Tenerife population differs by a single nucleotide substitution from the most common continental haplotype of B. terrestris. This situation, identical to that of Tyrrhenian islands populations and quite different from that of B. lucorum (15 substitutions between terrestris and lucorum mtDNA) casts doubts on the species status of B. canariensis. The large genetic distance between the Tenerife and B. terrestris populations estimated from microsatellite data result, most probably, from a severe bottleneck in the Canary island population. Microsatellite and mitochondrial DNA data call for the protection of the island populations of B. terrestris against importation of bumble bees of foreign origin which are used as crop pollinators.
Resumo:
In the plant-beneficial soil bacterium Pseudomonas fluorescens CHA0, the production of biocontrol factors (antifungal secondary metabolites and exoenzymes) is controlled at a posttranscriptional level by the GacS/GacA signal transduction pathway involving RNA-binding protein RsmA as a key regulatory element. This protein is assumed to bind to the ribosome-binding site of target mRNAs and to block their translation. RsmA-mediated repression is relieved at the end of exponential growth by two GacS/GacA-controlled regulatory RNAs RsmY and RsmZ, which bind and sequester the RsmA protein. A gene (rsmE) encoding a 64-amino-acid RsmA homolog was identified and characterized in strain CHA0. Overexpression of rsmE strongly reduced the expression of target genes (hcnA, for a hydrogen cyanide synthase subunit; aprA, for the main exoprotease; and phlA, for a component of 2,4-diacetylphloroglucinol biosynthesis). Single null mutations in either rsmA or rsmE resulted in a slight increase in the expression of hcnA, aprA, and phlA. By contrast, an rsmA rsmE double mutation led to strongly increased and advanced expression of these target genes and completely suppressed a gacS mutation. Both the RsmE and RsmA levels increased with increasing cell population densities in strain CHA0; however, the amount of RsmA showed less variability during growth. Expression of rsmE was controlled positively by GacA and negatively by RsmA and RsmE. Mobility shift assays demonstrated specific binding of RsmE to RsmY and RsmZ RNAs. The transcription and stability of both regulatory RNAs were strongly reduced in the rsmA rsmE double mutant. In conclusion, RsmA and RsmE together account for maximal repression in the GacS/GacA cascade of strain CHA0.
Resumo:
In Pseudomonas fluorescens CHA0, an antagonist of root-pathogenic fungi, the GacS/GacA two-component system tightly controls the expression of antifungal secondary metabolites and exoenzymes at a posttranscriptional level, involving the RNA-binding protein and global regulator of secondary metabolism RsmA. This protein was purified from P. fluorescens, and RNA bound to it was converted to cDNA, which served as a probe to isolate the corresponding chromosomal locus, rsmZ. This gene encoded a regulatory RNA of 127 nucleotides and a truncated form lacking 35 nucleotides at the 3' end. Expression of rsmZ depended on GacA, increased with increasing population density, and was stimulated by the addition of a solvent-extractable extracellular signal produced by strain CHA0 at the end of exponential growth. This signal appeared to be unrelated to N-acyl-homoserine lactones. A conserved upstream element in the rsmZ promoter, but not the stress sigma factor RpoS, was involved in rsmZ expression. Overexpression of rsmZ effectively suppressed the negative effect of gacS and gacA mutations on target genes, i.e., hcnA (for hydrogen cyanide synthase) and aprA (for the major exoprotease). Mutational inactivation of rsmZ resulted in reduced expression of these target genes in the presence of added signal. Overexpression of rsmA had a similar, albeit stronger negative effect. These results support a model in which GacA upregulates the expression of regulatory RNAs, such as RsmZ of strain CHA0, in response to a bacterial signal. By a titration effect, RsmZ may then alleviate the repressing activity of RsmA on the expression of target mRNAs.
Resumo:
The proteasome produces MHC class I-restricted antigenic peptides carrying N-terminal extensions, which are trimmed by other peptidases in the cytosol or within the endoplasmic reticulum. In this study, we show that the N-terminal editing of an antigenic peptide with a predicted low TAP affinity can occur in the cytosol. Using proteomics, we identified two cytosolic peptidases, tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, that trimmed the N-terminal extensions of the precursors produced by the proteasome, and led to a transient enrichment of the final antigenic peptide. These peptidases acted either sequentially or redundantly, depending on the extension remaining at the N terminus of the peptides released from the proteasome. Inhibition of these peptidases abolished the CTL-mediated recognition of Ag-expressing cells. Although we observed some proteolytic activity in fractions enriched in endoplasmic reticulum, it could not compensate for the loss of tripeptidyl peptidase II/puromycin-sensitive aminopeptidase activities.
Resumo:
According to recent crystallographic studies, the TCR-alpha beta contacts MHC class I-bound antigenic peptides via the polymorphic V gene-encoded complementarity-determining region 1 beta (CDR1 beta) and the hypervariable (D)J-encoded CDR3 beta and CDR3 alpha domains. To evaluate directly the relative importance of CDR1 beta polymorphism on the fine specificity of T cell responses in vivo, we have taken advantage of congenic V beta a and V beta b mouse strains that differ by a CDR1 polymorphism in the V beta 10 gene segment. The V beta 10-restricted CD8+ T cell response to a defined immunodominant epitope was dramatically reduced in V beta a compared with V beta b mice, as measured either by the expansion of V beta 10+ cells or by the binding of MHC-peptide tetramers. These data indicate that V beta polymorphism has an important impact on TCR-ligand binding in vivo, presumably by modifying the affinity of CDR1 beta-peptide interactions.
Resumo:
The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2) and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.